Image Processing and Vicieo Synthesis Don S
Electronic ideographic Techniques

by Stephen Beck

I. Electronic imaging techniques as applied to television utilize the inherent plasticity of the medium to expand it beyond +2 . strictly photograpiaic/realistic, representational aspect which: caryerizes the history of television in general. A wide variety of electronic instruments have been constructed by engineers, artists, and engineer-artist collaborations in the past several years which operate specifically with TV sets as primary display or "canvass". Each imaging system which hes been developed reflects the artistic and technical capabilities of its originators, and tends to be utilized according to distinctive different aesthetic theories. In some cases the resultant linage is larceny due to the inherent circuit designs of a given instrument In other cases, the instrument is utilized to produce an image int: a specific visual or psychological affect, the electronic aspect bin more of a means than $a n$. end to the realisation.

Regardless of the specific aesthetic usage of particular instruments, some insight may be obtained by examining the structure? differences and similarities between n n typical video synthesizers and image processors, as well as some of the basic circuitry which is used in these devices. In every case, the video synticater may be viewed as a"tip of the iceberg" of electronic technology \& Visual arts. \cdots Vast armies of individuals make the transistors, resistors, capacitors, amd integrated circuits nisi comprise a synthesising instrument, when properly applied under the design of visually inclined electronic artists.
-I. Categorical distinctions of electronic video instruments. Just as in the science of biology many clessifications of lifeforms ezist, there are several gerre of video zrnthesizer. In the serse that a synthesizer in general is sometang whein comoines perts to form a whole entity, fust about $\equiv 1$ video instruments could be ciassified as such. However, in teqms of structural details some clarification can be made. I have listed several eatesories of video imace instruments accordins $=0$ unioue qualities cf tieir arinciple of operation, along witis some criteria for masinctie distinction, and artists and engineers in the video art fieli wo are usins these methods.

1. Vemera 1mace processor types. These types include such techniques as colorizôr whici add cirominance signal to black and white (mono chrome) signal from TV camera; keyers and quentizers which seperate value levels in a scene and allow other zrocesses to take plase in that scene- aci synthetic color, plece another image in certain places of the original, obtain matte $=$ Efects; modifiers which dowtt alter the geometry of the imaze but rather whein affect lts grey scale such as polarity inversicn, or which generate and edge around elements of the image, or which mix by superimposition several lmage; sources. Some systems which are essentially of the image processor type described intlude those buitit by: Paik/Abe, Siegle (OVS), Templeton, Saindeen, Hearn, Vasulkas, and others. S:GEL
2. Direct Video syrthesizer types. These types are in principle conceived to operate without the use of any camera image, though some of them can also perform the processing operations described above. Basically, a complete TV signal is formed from electronic generators which comprise the synthesizer circuits, which include
ciruitry such as color generotors wich produce chromincance signals accoraing to either I-Q methods, Hue-Saturation methofs, or Red-Green-Blue methods; form generato F which estabilis the necessary pulse vibrations to produce shapes, planes, lines, or points and to mave them in various ways by use of motion modulators with either simple electronic waves such as rampe, sines, or triangles, or mare comlex curves, or even with audio frequency sound sienals; texture amplifiers which alow for color manipula $i o n$ to achieve shading, chiarascuro, "airbrush", or grenulated effects, roughly could be thousht of as electronio brush effects. Instruments using the Direct ${ }^{\text {V }}$. 1 eo procesa include those by Beck (Direct Video Synthesizer), Siesle (EvS Dupouy (Movicolor), EMS (Spectron), and others.
3. Scan modulation/Re-scan types. These types rely on the principle of a TV camera viewing an oscilloscope or television screen which displays the image from another mV camera. Tie image on the screen can then be manipulated geometrically (stretched, squeezed, rotated, reflected, etc.) by means of deflection modulation, either magnetically or electronically. The second TV camera then transforms this ima§e into one bearing a proper TV scán relationsipip, and may then be colorized or processed by tecinioues outlined in section 1 . These systems can also be uised without an input camera where the image then consists only of the manivulation of the raster, producing Iissajous type images. دystams using this method include those by Harrison (Computer Image), Paik/Abe, Rutt/Etra, and others.

- 4. Non-VTR recordable.types. These types are included for completeness and encompass those video displays which do not actually produce a standard TV sieral waveform and can hence only be utilized on one set which 13 specially pre= pared, and cannot be directly recorded on marnetic video tape. Nost are based primarily upon magnetic distortion of tine nornal TV scan yatter, or else they utilize a color picture tube as if it rere an oscilloscope screen. Such individuals
tambqLLINi as Paik, Tadlock (Arcietron), and Hearn (Vidium) have utilized these teciniques in their video sculptures.

I have not included in this categorization the studio switcher and special effects generator to be found in most teleproduction studios, whici include processing and wipe generation, or the emerging video game box wich is in principle a direct video signal generator of very specific configuration. Nor have I alluded to video feedback teconiques, which all systems are capable of sustaining in one of its various forms.

In every case the individual approach to video instruments encompasses a wide variety of circuit designs and processes. Some require cameras, others do not; some utilize a form of voltage icontrol which permits color changes, image size, or movement fate, for examgles, to be changed by some other circuit, in adaition to being changed by an operator. This factor indroduces an interesting dilemma into the realm of electronic images: how much is the image a product of the instrument rather than of the instrumentalist?
A. Vieo synthesizer cen be set to conditiors whict cenerate imase fiter imase for hours upon hours- perhans intersstins, perhaps not- denends upon the viswer. But in this case the imases have their composition in the circuit design and procramming of the instrument. or the image may be altered and shaped temporally by someone fiaying the video syutnesizer, in which case the smases have their composition in the mental image of the ilayer, interactirs with the circuit desisu.

Cne can conceive of a synthesizer as a Eenerative device which forms the resultant picture by a process of assemblage of electronic pulsation, or one can conceive of it as a filtration device in which, due to the proper selection of numerous electacnic conditions, a Eiven image out of tie infinity of possibie imases results $2 s$ a picture. Giordono Brumo in his thesis De Immensc, Innumerabilius et Infigurabilibus postulates an infinite number of universes which are perceived by a selective process. fo form a reality distinctly unique to the viewer. Thus it is that a video synthesizer and Marconi Mafiz J color studio camera reveal very different images- each is filtering accordins to very different criteria- neither one mofe or less valid, juxt different.

Then visual literacy has advanced sufficiently, many will no longer cqnsider the synthesized image as a by-product of television tècinology, but as a visual reality of its own, distinct from the terms of a representational, photographic image, an image whici is more glyphic than literal.
III. Two examples of videc synthesizer circuit structures. In order to illustrate in more detail some typicsil eleotwons techniques utilized in viseo synthesizer and imaze processor circuits I shall mention the comperator circuit and colorizing techniques.

The comparator is a ven: general cireuit used in keyers, quantizers, wibe eceretcrs, and form enerators. It is sycolized electronically as a trianele enclosins a question marix:

There are two inputs and one output. The inputs can be continucus voltages from, say, a scale of $0-10$. The output however is allowed only two conditions: ON or OFF. The Eppropriュさ concition is determined by comparing the values of the tioc inpute. If the + input value is greater than the - input vaiue the output is ON; If the + input is the same as or less than the - input the outputis OFY. A tyoical cirouit used for this function is the $u 710$ intesrated circuit, about the size ci a dime.

Then the continuous voltage to one input comes from a monochrome. TV camera the vaiue O represents any black areas in the image, while the value 10 represents the brightest white areas in the "picture, with velue 5 representing an area of medium grey. Imagine the image to be a white cross inside a grey square surrounded by a black backround. the imafe could be depicted schematis=lly as

If the other input to the comparator comes from a fixed value source, called the treshold, then the revilent cirouit is a simple keyer. The outout will be off whenerer the picture element is less tian the threshold and will be on whenever the picture element is more than the threshold.

For example, the white cross could be colorized by settins the tireshold to say vilue ? and connectincs the output of the comparatof to a colorizor astivate circuit. Criy where the picture value exceeds value 7 will the color be turned on, in the recion occupica $b y$ the eross. If anctiner comparatow were introduced with its threshold set to value 4 then the output would be ofr in the resion occupled by the grey box and . the white cross, and it couli be used to control a second colorizor producing a colored square, which might be combinod with the colorized cross. If the two invuts to comparator ? were exchanged, ther tie color would be inserted into the erea surrounding the grey square.

Clearly this examole cer e extended to many channels, 8 or even 16 not being uncomen, and forms the basis for quantizing colorizors and multiple level keyers used by some video artists. Bear in mind that the scanning process traverses each line of picture elements in some 52 millionths of a second, with esck element being occupied for only 250 nano seconds (billianths of a second) "so that the comparison must be performed very fast. The u710 can make a comparison in less than 20 nanoseconds. But at this hizh speed, and wher the picture and thresiold levels are almost equal (within a fe:: thousand ths of a volt) the output often is undecisive, oscilisting back and forth for a time, producing the speculated or "tom" edge characteristic of keying.

Colorizing. In televizion color three types of phosthors are applied to the inside surface of the picture tube which each emit a differing color light when excited by electrons scanning over them. The triree colors are red, green, and blue, and are applied in either triadic clusters of tiny dots, or in very thin strips, so that \equiv normal viewing itstances the individual phosphors are not discernable as such, but tend to fuse their colors accoring to the subje:tive process of color vision. Each of the primary colors can be varied in intensity from zero to 100 by modulsting the intensity of the electron streams exciting them. Ir this manner, polychromatic revroduction. is achieved fy controlline the admixture of tiree primary colors. Since the color process is additive and involves the mixture of emitted light $a l l$ three colors when excited in equal amounts produce the sensation of white or grey values. Then just the red and the green colons are stimulated a yellow color is sensei, or when red and blue are exaited, purples result.

The three properties of color include hue- wint is the wavelength of the color (i.e. yellow as opposed to green or biue) saturation- how intense or vivid is the hue; and brightness or value- how much is the color diluted or made pastel by the aditic of white or gey. Any videc colorizor must determine each of the three properties. In black and white television (more properly known as moncirome) the picture is composed entirely of various intensities of light of a bluish-white nature. This signal is known in television terminology as the luminance signal. It conveys information of vミlues. With color television an additional information berring signal is used to convey the hue and saturation information, called the chrominance signal or chroma.

This crrominance sienal is present in the form of a color subcarrier wich vibrates at $3,579,549$ cycles zer second. Its intensity or amplitude is varied accordins to the saturation of the color, and its phase is varied socordins to the hue of the color. This tochiques of phas modulation requires the presence of a pilot or reference signal to supply the phase ancle reference, known as the color burst.

In essence, the color spectrum may be visualized as occupyinz a circular distribution. The center of the circle represerts no saturation, while any distance dutward from the center represent progressively more saturated colors with the direction representing the hue of the color. In fact there are actually two elements of the color subcarrier which can be controlled to produce synthetic color; the I and a components, standins for inphase and quadroture.

The simplest coloriz $\delta_{r s}$ operate on the hie-saturation principle With one control affecting the phase of the color subcarrier thus detemining red, yelllww, green, cyan, biue, or magenta hues wille the other control affects the amplitude of the subcarrier determining the vividness or saturation of the desired hue. In ajditional control may be used to introduce a luminance value, or the subcarrier can be added electroxically to an existins monochrome signal derived from a camera.

Arother type of coloriz δ_{0} operates by modulating the intensity of the I and Q subcarrier components. The combined effect of two independent modulations generates both hue and saturation information, witi the two variables both beine affected simultaneousiy. Thus to change the vividness of a given hue both contrcls must be changed tosether.

A third type of coiorizen circuit is the Red-Green-Blue encoding method. Three controls determine the saturation levels of red, green, and blue primaries, which then mix In the encoder to produce luzinance, and chromanance signals of the standard video signal. Beisdes operating in a graphic mode tais type of cclorizer is readily adaptable to other IV systems in use by substitution of encoding circuitry. The I / Q and Tue/Saturation zethods normally require different techniques for each type of television system used.

Nany colorizers are limized to full screen color or quantized color type of operation. This allows for basically hard edse color. In the Bec: Direct Video synthesizer I have been particularly interested in surmounting this limitation and achieving a full range of color contouring.
IV. Video synthesis end com:iter grashice. In the strict sense of the word a disital computer is but a larse collection of electronic switches arransed to operate on binary bits of information. As such, most video synthesizers do not qualify as computers; altiousin the analog computer, with opamps, differentiators, intesrators, and amplifiers more closely resembles the structure of video synthesizers. Computer graphics generally has been ione with oscilloscope displays under computer control, thou큰 some newer systems do generate images on color televisior ixsplay directly. We can expect to see the use of digital computers in the control of video synthesizers via means suc: 三s digital to analog converters. When one compares the bandwidth of video imases (4,200,000 cycles per second) with comFiter processing speeds (500,000 bits per second typically) or with audio signals (20,000
cycles per second) the gap between computer output speeds and the necessary information rates to senerats a moving video image become apparent.

In terss of circuit devices most video synthesizers and imase processors utilize discrete transistors and some types of integrated microcircuits. We can expect to see the emergence in two or three years of video integrated circuits designed specifically for the imasing functions of telerision display. Video synthesizers consume electrical power of from 50 watts to several hundred watts- far less than even a single spotlifht utilized by the dozen in standard canera studios. They also require far fewer personnel to operate them compared to standard teleproduction.:. . Both of these factors make video synthesized television images appealing from an economical perspective.
V. The appearance of electronic imaging inxtruments such as the videc synthesizer and image processors uskers in a new lanธuase of the screen; non-representational and departing from the conventional television image, these methods will stimulate the awareness of new images in the culture. Any growth of the video synthesized image will be contingent on the ability of video artists to become proficient in techniques of composing and presenting synthesized imagery. The instruments themselves will not perform without the artistic consciousness of a skilled operator.

Image Processing anc Video Synthesis
Booklist and References for additional readine on techniques.

1. Direct Video: An Electronic Artform for volor Television by Stephen Beck, 1972, Reports, National Center for Experiments in Television.
2. Methods from Syntiesis tape by Stephen Beck, 1972. Produced by National Center for Experiemnts in Television, available from Electronic Arts Intermix, N.Y.
3. Fundamentals of Television by Walter H. Buchsbavim. 1964, John F. Rider, Inc.
4. Television Broadcasting by Howard A. Chims, 1953, McGraw-Hill.
5. Television jystems Maintainance by Harold E.Ennes, 1967, d. Howard Sams Co., Inc.
6. Fundamentals of meleviston Engineering by Glenn M. Glassforí, 1955, Mc Graw-H111.
7. Musid/Image Horkshop by Eon Hays, 1974, WGBH Educational Foundation.
8. Introduction to Solid State Television Systems by Gerald I. Hansen, 1969, Prentice-Hall, Inc.
9. Handbook of Marnetic Becording by Finns Jorgensen, 1970, Tab Books.
10. Color Télevision Fundamentals BY Milton S. Kiver, 1955, McGraw-Hīl, Inc.
11. Television Simplified, Gth Edition, by Milton $氵$. Kiver, 1962, D. Van Nostrand ©o., Inc.
12. TV Servicing Made Jasy b: Wayne Lemmons, 1971, Howard. W. Sams \& © 0 .
13. Television and Z玉dio zepairing by John Markus, 1961, Kçraw - Hill.
14. Independent V1dec b: Ken Marsh, 1974, Straight Arrow Books. 15. Videa ' n ' Videolosy:Nam June Paik, edited by Judison Eosebush, 1974, Everson Nuseum of Art.
15. Tilevision in Soience and Industry by V.K. Zworykin, 1958, John Wiley \& Sons, Inc.

Abstrect: Imace Processing and Video Synthesis Blectronic Vieeographic Techniques by Stephen Beck
This article demarcates the structural distinctions between varícus instrumerts constructed and used by video artists. In aidition two typiaal circtits, the comparator and colorizors are isscussed. The intent is to clarify for the viewer the 三jproaches to electronic viceo image making presently in use.

Stephen Zeck holds a degree in electrical engineering from the University of California, ${ }^{2}$ erkeley, and also studied at the University of Iilinois, Urbana in electronics and electron music. He constructed his first direct video synthesizer (\#C in 1969 , and another synthesizer while affiliated with the National Center for Experiments in Television, San Francisco. His videographic work include many compositions realised with the direct video synthesizer on video tape, live performances and videofilms. Presertly he works from a studio in Berkeley

Geometry + MDTION
texture

i denotes a control voltage port
FIGURE 1 : DIRECT VIDEO SYNTHESIZER SYSTEM BLOCK DIAGRAM

