

CORRECTION OF ERRORS IN DOCUMENTATION

Master Parts List:
The following-

should be changed to-
ADVENT ELECTRONICS
7110-16 N. Lincoln Ave.
Rosemont, Ill. 60018

30	$09-02-1152$ Molex P-C Board Con.	.58	17.50
300	$8-30110$ Mole Inserts	.036	10.70

ADVANCED PHOTO SOUND PRODUCTS
49 So. Washington St.
Hinsdale, Ill. 60521
10 1-526-063-11 6-Pin Female Chassis Mt. .90 9.00
(also, Color Encoder Board when design is finished)
COLOR ENCODER:
The Sony board that was used in the color encoder is no longan avail e
 designitili be wendy samiserto th b ada ono. With the exception of the kndodef board itself and its $p-c$ Board connector, it would be fairly safe to orefrye phrytorism a prediction not a promise). vS BOARD: DOCYON DXC5000 OK USEIF YOU

CAN FIND 5000 CAVY
The VS 5 board is used to route power into the Sync Strip, Input Mod, Comparator, Function Gen. modules. Due to a drafting error on the card, the tongue that sticks out to receive the power connector may be too large for the Molex connector on the power buss. File the tongue equally on both sides so that the connector will fit if nfcessay.
aNEW DESIGN DUE .BY FEBTCT 80

CORRECTION OF ERRORS IN DOCUMENTATION

Master Parts List:
The following-

should be changed to-
ADVENT ELECTRONICS
7110-16 N. Lincoln Ave.
Rosemont, Ill. 60018

30	$09-02-1152$ Molex P-C Board Con.	.58	17.50
300	$8-30110$ Mole Inserts	.036	10.70

ADVANCED PHOTO SOUND PRODUCTS
49 So. Washington St.
Hinsdale, Ill. 60521
10 1-526-063-11 6-Pin Female Chassis Mt. .90 9.00
(also, Color Encoder Board when design is finished)
COLOR ENCODER:
The Sony board that was used in the color encoder is no longan avail e
 designitili be wendy samiserto th b ada ono. With the exception of the kndodef board itself and its $p-c$ Board connector, it would be fairly safe to orefrye phrytorism a prediction not a promise). vS BOARD: DOCYON DXC5000 OK USEIF YOU

CAN FIND 5000 CAVY
The VS 5 board is used to route power into the Sync Strip, Input Mod, Comparator, Function Gen. modules. Due to a drafting error on the card, the tongue that sticks out to receive the power connector may be too large for the Molex connector on the power buss. File the tongue equally on both sides so that the connector will fit if nfcessay.
aNEW DESIGN DUE .BY FEBTCT 80
[-

HI:

This edition of the documentation was paid for by a grant from the Illinois Arts Council. Thank you, Ill. Arts l

A bunch of miscelaneous notes -
If you didn't send postage, send it in stamps, money or chock, or any thing else of comparable value (surprise hakintrinsio value)/ postage costs me \$2.00.

AND coppys of covections cosT ME 11
The master parts list contains the minimum order to complete the Image processor. It is necessary to order more than the minimum of nearly everything. Parts may be damaged in assembly or may be defective. Although the Image Processor is very reliable, replacement parts are necessary for maintence. Furthermore, I attempt to design with a minimum of different parts, therefore new modules or modifications of modules are likely to use the same parts. With the exception of the hardware and the most expensive components, I recommend ordering many extra.

If you need clarification on details; CALL (or send video tape). Don't writes I hate to write.

New corrections and additions are forth-coming in a few months. When ready to build, send self addressed stamped envelope Mention the last date of corrections you have.

CORRECTION OF ERRORS IN DOCUMENTATION

Master Parts List:
The following-

1000 .er
KG 54/U coamacame bus

5454
N^{\prime}

$$
36 \text { F Ilo' (OLELDEN \# } 8241-1000 \text {) }
$$

\qquad

CHART INSTRUCTIONS:
From left side of
chart, select in order, foll weIght, number of foil sides,
and type of PLATING. From top of chart,
select type of base material and THICK. NESS.
The figure, at inter-
section of PLATING and THICKNESS, is base cost per square inch. Use letter at bottom at right of row for order number.
Enter E.D.I. order number here. F12

Γ

Customer Hame a dress. Correct if necessary.

THE IMAGE PROCESSOR MAY BE COPIED BY INDIVIDUALS AND NOT-FOR-PROFIT INSTITUTIONS WITHOUT CHARGE. FOR-PROFIT INSTITUTIONS WILL HAVE TO NEGOTIATE FOR PERMISSION TO COPY. I THINK CULTURE HAS TO LEARN TO USE HIGH-TEK MACHINES FOR PERSONAL AESTHETIC, RELIGIOUS, INTUITIVE, COMPREHENSIVE, EXPLORATORY GROWTH. THE DEVELOPMENT OF MACHINES LIKE THE IMAGE PROCESSOR IS PART OF THIS EVOLUTION. I AM PAID BY THE STATE, AT LEAST IN PART, TO DO AND DISEMINATE THIS INFORMATION; SO I DO.

As I am sure you (who are you) understand a work like developing and expanding the Image Processor requires much money and time. The'U' does not have much money for evolutionary work and getting of grants are almost as much work as holding down a job. Therefore, I have the feeling that if considerable monies were to be made with a copy of the Image Processor, I would like some of it.

Put in your own method of returning energy to me here: \qquad
$\bar{\square} \bar{\square}$

Of course enforcing such a request is too difficult to be bothered with. But let it be known that I consider it to be morally binding.

Much Love,

$$
\begin{aligned}
& \text { I DECIDED T HAT I } \\
& \text { WOULD LIKE } 1 \text { good }
\end{aligned}
$$

Daniel J. Sanding
Department of Art
University of Illinois at Chicago Circle Box 4348
Chicago, Illinois 60680
Office phone: 312-996-8689
Lab phone: 312-996-2312
Messages: 312-996-3337 (Department of Art)
TAPE
From
EACH
copy
of THE

Tha adder muitipilan is used to add (nperinupose), tade and gain control (multiply) ,
signals.
JIl, JI2, JI3 and the inverted signal of JI7 are added together to form input channel A.
JI4, JI5, JI6 and the inverted signal of JI8 are added together to form input channel B.
The knobs above the connectors control the gain (contrast) of each individual input.
The amount of channel A and B mixed into the output, JOl through JO4, is dependent on the position of Rg and the voltage inputted to JI9.
The effect of the knob position and the voltage are additive; the knob to the left and/or a maximun negative voltage on JI9 will cause channel B to be outputted only, similiarly, the knob to the right and/or a maximm positive voltage will cause channel A to be outputted only. The knob at approximately the center with no voltage applied to JI9 will cause half-of channel A and half-of channel B to be added together and outputted.

TEST STUFF:
The adder multiplier should have a net gain of slightly greater than 1 .
That is, a $(+)$ or ($(-) .5$ volt signal into the module should result in an undistorted output of approximately the same magnitude into a 75 ohm load.

With no input the output should be approximately 0 volts (+ or -.05 volts). Adjust 20 k trimmer pot so with R9 in center position and no input to JI9 channel A and channel B have equal gain.

Cl* STUFF:
The capacitor, $C l$, is used to filter the bias control, R 9 . One may choose a value which will vary the 'feel' of the knob.

20uF is a minimum value which will remove some noise...
50uF is the minimum value that I use; it doesn't affect the feel of the knob...
l00uF removes same shakiness of the hand (included in the parts list)...
500uF is Phil's recommendation (very slushy feeling)...

ADDER-MULTIPLIER

The power supplies are purchased modules and should come with complete documentation; if not request from LAMDA.

In the IP, power supply regulation and high frequency transient response are critical. Substitution of other power supply modules is NOT recommended.

In each box all corresponding terminals of the 10 pin Jones connector are connected together.

The output of the power supplies are connected to the appropriate pin of one of the connectors.

In both power supplies (Box one and Box two), the binding post terminals are connected to the appropriate 10 pin Jones.

A cable with two male Jones plugs and corresponding pins connected together is used to communicate power between the boxes.

One side of each box should be covered with perferated metal or screen to allow for ventilation. This side should never be blocked to prevent ventilation. DO NOT let transistors touch screen.

The 110 v . AC which powers the power supplies is the only potentially lethal voltage in the IP. BE CAREFUL AND WATCH YOUR FINGERS.
--Box one contains $+12,-12$ power supplies. --Box two contains $+5,-5$ power supplies.

BOX ONE
BOX TWO

FRONT

FRONT

BACK

* try to mount as many 10 ban cinch-jones (females)as possible.
- Ac. POWER is jumped from "box one" to "box two" by male-female ac. cord SO AS TO BE SWITCHED ON/OFF BY COMMON SWITCH ON 'POWER I'.
- "box one" and "box two" are always connected by one male-male io pin cable so as to make all 10 pin connectors have all power supply voltages.

$\frac{1}{\overline{2}}-M E A N S$ GROUND TO METAL BOX
H-MEANS GROUND TO PIN \#1

	1／ヤいだ，－
4．－－－－－e	
1－3－－－－c	
$\because 1904$	
－utigac	
－ごち	
－r 「ご	$1: 1-41:=61$ FiSl ，Latin $1 k$
－$-1=2$	
Sur 134 c	
$\operatorname{tr} 1=\mathrm{ar}$	
\rightarrow ¢1＝＝	
2－13＋0	
54． 5 \％	
ぐ1）	
3－： 31	
ji－ 3 ＋	

PS 1
$P S 1$

COMPARATOR

The function generator generates an output which is an arbitary function (with up to two points of inflection) of the input at JIl. This results in an effect that is similiar to but more complex and controllable than photographic:solerization.

The function is controlled by R1, R2, and R3.
Rl controls the slope of the function for large negative inputs. R2 controls the slope of the function for inputs near 0 voltages. R3 controls the slope of the function for inputs of large positive voltage.

Clockwise is positive slope; counterclockwise is negative slope.
There are three electrical modules in one chassis box, so replicate work three times. Remember to buss (connect) +12 and -12 and ground wires from middle board to top and bottam board. Soldering directly to the foil is convenient.

TEST STUFF:
The 20K trinming resister on the VS5 board is adjusted such that no input results in 0 output voltage + or -.05 volts.

The differentiator produces an output which is proportional to the rate of change of the input signal. Fast rates of change corresfond to edges in a picture and are preferentially amplified by the module.

JI6 amplifies only the sharpest edges...
JI5 amplifies the sharpest edges and slightly softer edges...
JI4, JI3 and JI2 amplify progressively softer and softer edges until by JIl almost all of the whole picture is amplified.

There are three electrical modules in one chassis box. One diagram is supplied, so . replicate work three times. Remember to buss (connect) $+12,-12$ and ground from the center board to the upper and lower boards; soldering directly to the foil or connecting corresponding bypass capacitors is convenient.

TEST STUFF:

The module should amplify high frequency (greater than 20 kHz) sine waves with greater gain than lower frequency sine waves. The sine waves should be undistorted.

Square waves should be differentiated; that is, there should be a positive spike associated with the rising edge of the square wave, and a negative spike associated with the falling edge of the square wave.

No input should result in 0 volts output + or -.05 volts.

JII	Jİ			-	\square	
.						
-	-		JoZ	-	-	
${ }^{513}$	514	J01				
			504		-	
515	JIL	503	-			
\cdots	\cdot		-			
\pm		-				
-	-	\square				
						\square
-		+	-		FRONT	T
.	.				FACE	-
.	.	\cdots	1			\square
+		I	-		T	
-	.	.			-	T
		1		\pm	-	H
-	+	+	+		\square	
.		\square			-	
\cdots	\cdots	\square	\cdots	\square		
	-		-	+		
		+				
\square	-	-	-	DIFF	FERENT	TIATOR
			-			
	-	-				
			$1+$			

This addendum provides brief data for an optional differentiator (opt. diff.). The opt. diff. has some trade-offs compared to the original differentiator (orig. diff.). Consider the following and evaluate for yourself:

In the orig. diff. you input a signal via any 6 BNC inputs (JIl-thru-JI6); and, in the opt. diff. you input a signal to 1 BNC input (JIl), control its gain with R1, and its differentiation constant via a variable capacitor (VAR. CAP.). The VAR. CAP. will give you the same approximate differentiation constants as JI2-thru-JI6 in the orig. diff.; but, will not give you the largest differentiation constant available at JIl in the orig. diff.

PART NUMBER FOR THE VAR. CAP. IS: ALLIED $\#$ 695-2300 (7.2pf-151pf) $\$ 9.00 / \mathrm{ea}$.

SCHEMATIC for opt. diff. -

FRONT FACE for opt. diff. -

1/2 Middle Board VCO

ALL ZENERS -DF $=1 N 5338 B$
TRANSISTORS:2N4123

1.) SINE-WAVE PURITY CONTROL:

Remove 82 K resistor; and, add 100 K trim-pots as shown In diagram. These 100 K trim-pots correct sine-wave purity. You should be able to trim to a 'perfect' sine-wave. $10 \mathrm{k} / 2 \mathrm{~m}$.

PROCEDURE-

A) Before supplying power to the module, center all trim-pots.
B) Set the oscillator at a middle freguency range, and display sine-wave on scope.
C) Tweek the trim-pots for highest amplitude possible (± 1 volt) without creating any flats or peaks in

2.) HIGH-FREQUENCY SYMETRY CONTROL:

R10 and R11 maybe replaced by a series combination of 2.2 K resistor and a 5 K trim-pot. This series combination (RT10 and RT11) correct high-frequency symetry and low-frequency quenching of waveform; see diagram.

If both trim-pots are too large, the high-frequency end of each range will be lower than optimum.

If both trim-pots are too small, the low-frequency end in some ranges may quench, particularly in SAWTOOTH mode.

The difference between the trim-pots determines the high-frequency symetry.

PROCEDURE-

B) Turn 10-turn pot to extreme left (lowest freq.); check to make sure that no range quenches in sawtooth mode. If quenching happens in any range, tweek trim-pot to get rid of it... C) Turn 10-turn pot to extreme right (highest-freq.); check to make sure that in a higher frequency range you stlll have good symetry in triangle mode. If you dorit have good triangle symetry, tweek trim-pot to get it...

GO BACK AND CHECK FOR SAWTOOTH QUENCHING...
D) To maximize high-frequency in ranges, decrease both trim-pots equally and go-to-step B). If oscillator quenches at low-frequencles, back up some; i.e. increase resistance, go-tostep C). Stop.

NOTE:

These trim-pots will have to be outboarded on a perf-board and attached to card support frame of the module. Leave enough lead length on the trim-pots so it can be gotten out of the way for servicing the cards...!

Some 8038 integrated circuits appear to behave better than others; you may want to try various 8038 's, choosing the best tehaved ones...!

The Reference module produces a constant voltage proportional to front panel knob position. It uses $2 \frac{1}{4}$ \#217 printed circuit boards; save other $3 / 4$ of boand for making 3-D Joystick later...

Joystick and slide pot inputs could be created in analogous manner. The value of input resistor, Rl through R9, is not critical; for instance if 5 K ohm pots in joysticks are available, use them.

Capacitors C_{1}, C_{2}, are used to filter out noise. 100 F is the minimum and does not affect the feel much. Dan chose 250uF and Phil chose 1000uF; lo00uF is very 'slushy'.

CAPACITORS C_{1}, C_{2}, MAYBE ANY VALUE BETWEEN 100 mF - $1000 \mathrm{\mu F}$.

