
SOFTWARE FOR A COMPUTER

BASEL VIDEO SYTEESIZER

WALTER WR I G1 T

JULY IS77

EXPERIMENTAL TELEVISION CENTER LTD
164 COURT ST+ BINGF.AMTON

NEW

	

YORK.P, 13S 7 1
607 72.3-95CS

SUPPORTED BY NYSCA AND NEA

+---:-___-___----__---_-----------------_________----___----------

INDEX

*-- 4

CHAPTER I - INTRODUCTION AND PROGRAM GOALS I

CHAPTER Z - DESCRIPTION OF MAIN PROGRAM 3

2-1 HARDWARE CONFIGURATION 3

INITIALIZATION 4
I GLGSALS AND SYSTEM MACROS 4

C .
, r_ , e_ DIGITAL TO ANALOG CONVERTERS

2 ^ - 3 BUFFER MEMORY 6
2--Z-4 DATA BUFFER CONTROL 7

4-3 TIMING ROUTINE
3 . 1 INTERRUPT SERVICING

2.3 .2' POLLING THE DATA BUFFERS

r_*4 THE INTERPRETER 13
Z-4-1 SUBROUTINE CROSS-REFERENCING 13

12*5 TIMING CONTROL SUBROUTINES Is
21 .5 .1 SET THE TIMING INTERVAL Is
f_-5-4' ADD TO ThE TIMING INTERVAL is
'e.-5-3 SUBTRACT FROM THE TIMING INTERVAL 15
C"-5-4 COMPLEMENT TEE TIMING INTERVAL is
2-5-5 ShIFT THE TIMING INTERVAL RIGHT 16
2-5-6 SHIFT TEE TIMING INTERVAL LEFT 16

2~6 DATA OUT SUBROUTINES- 17
6-1 SET THE DATA WORD 17
6-2 INCREMENT THE DATA WORD 17

r_-6-3 DECREMENT TFL DATA WORD 17
ZZ-6-4 ADD TO TEE DATA WORD 1 P,
2o6-5 SUBTRACT FROM THE DATA WORD I P_
2*6*6 COMPLEMENT THE DATA WORD 18
2-6-7 SHIFT THE DATA WORD RIGHT 19
2-6-8 SHIFT THE DATA WORD LEFT is
C'-06*9 ROTATE THE DATA WORD RIGHT zv
2*6*17 ROTATE TEE DATA WORD LEFT ele_V
Zo6oll BIT CLEAR WITH DATA WORD

BIT SET WITH DATA WORD
2-'6-13 XOR WITH DATA WORD

G-8 BUFFER CONTROL SUBROUTINES
E " 8 " l LOOP ROUTINE

E-9 PROGRAM CONTROL SUBROUTINES
G " S-1 INPUT ROUTINE
2 " 9 .E OUTPUT ROUTINE
£-S-3 EXIT ROUTINE

~5
E5

26
er_' 6
3Q"
.3G

---_---------_-----_--------------------_--------------------_--------- ., .

CHAPTER 3 - DESCRIPTION OF DATA BUFFERS 33

3-1 SOFTWARE CONFIGURATION 33

3-2 TABLES 35

3-3 THE ENABLE BUFFER 36

3-4 DATA BUFFERS 37

CHAPTER 4 - PROGRAMMING TECHNIQUES 39

4-1 CREATING TABLES 3s,
4.l " 1 A SAMPLE TABLE 39

4-2. CREATING DATA BUFFERS 41
4.Z .1 A SAMPLE BUFFER 41

4 " 3 PROGRAMMING THE DIGITAL TO ANALOG CONVERTERS 4 12
4 " 3-1 PROTOCOL 4*,
4 " 3 " 2 A SIMPLE RAMP 42
4,3-3 A REPEATING SAWTOOTH 44
4 " 3 " 4 A REPEATING TRIANGLE 46
4.3-5 MAKING A SINE WAVE 4 £'

2 " 7 DATA IN SUBROUTINES
2 " 7 .1 INPUT DATA WORD 23
E " 7 " 2. ADD INPUT TO DATA WORD
C.-7-3 SUBTRACT INPUT FROM DATA WORD 43
^c .7 .4 BIT CLEAR INPUT WITH DATA WORD 24
Z-7-5 BIT SET INPUT WITH DATA WORD re" 4
Z .7-6 XOR INPUT WITH DATA WORD £4

ChAPTER 5 - SUMMARY

5-1 LIMITATIONS OF THE PRESENT SOFTWARE

5 .2 PROPOSED SOFTWARE DEVELOPMENT

APPENDICES -

A-

	

LSI-11 OPERATION CODES

bo

	

COMMAND WORDS

Co

	

MAIN PROGRAM LISTING

D.

	

DATA BUFFER LISTING

0

CFAPTER I - INTRODUCTION AND PROGRAM GOALS

ThE SOFTWARE FOR TEE EXPERIMENTAL TELEVISION CENTER COMPUTER
BASED VIDEO SYNTHESIZER IS DESIGNED TO SATISFY THE FOLLOWING CRITERIA .
FIRSTLY .# THE SOFTWARE IS CONCERNED WITh GRAPhIC DESIGN AND COMPOSITION
SECONDLY.- THE SOFTWARE WILL BE ABLE TO ANALYZE AND SYNTHESIZE IMAGESj
AND FINALLYj THE SOFTWARE PROGRAM WILL REPROGRAM ITSELF IN RESPONSE
TO EXTERNAL STIMULAE. I N ORDER TO MEET THESE CRITERIA THE PROGRAM MUST
BE REAL-TIME AND INTERACTIVE- THE ARTIST WILL CREATE IMAGES AND
SEQUENCES OF IMAGES IN DIALOGUE WITH TEE PROGRAM-

IN WRITING THE SOFTWARE I HAVE WORKED FROM THESE DEFINITIONS .
THEVIDEO SYNTIJESIZER IS A GROUP OF PROGRAMMABLE MODULES FOR CREATING
IMAGES- THE COMPUTER PROGRAMS TEE MODULES COMPRISING THE SYNTHESIZER-
THE IMAGE CONTAINS BOTH TEMPORAL AND SPATIAL INFORMATION WHICH CONCERNS
THE ARTIST AND THE PROGRAMMER- THE IMAGE 15 RESURRECTED EVERY FIELD
(1 1/6? SEC) AND THIS BECOMES THE TIME-BASE FOR THE PROGRAM- NEW CONTROL
PARAMETERS ARE TRANSFERRED TO THE SYNTHESIZER MODULES EVERY FIELD-

A COMMON MISTAKE IN DEVELOPING NEW PROGRAMS IS TO BORROW FROM
AND TO IMITATE RELATED MEDIA SUCH AS ELECTRONIC MUSIC- I AM INCLUDING
IN THE PROGRAM COMMANDS TO EFFECT TEE ELEMENTS AND ATTRIBUTES OF GRAP1-_IC
DESIGN SUCH AS :

I -

	

CREATING POINTS jLINES AND BASIC SHAPES
2- CREATING TEXTURES
3 . DEFINING AREAS AND BOUNDARIES
4 -

	

DEFINING OBJECT/FIELD RELATIONSHIPS
5

	

CONTROLLING VALUEp LUMINENCE ANDICONTRAST
6 : CONTROLLING CHROMAo SATURAT10N AND HUE

CREATING SEQUENCES OF IMAGES-# TIMING PATTERNS
8- CONTROLLING DENSITY
S- CONTROLLING BALANCE AND SYMMETRY
le- CONTROLLING DEPThj .SCALE AND PROPORTION
11- CREATING FOCAL POINTS
I'Z- CREATING hARMONYj RHYTHM AND COUNTERPOINT
13- CREATING MOTION : TRANSLATIONj ROTATIONj WARPSj ETC

PAGE I

0

THIS PECULIAR APPROACH TC DESIGNING SOFTWARE IS NECESSARY IN
ORDER TO DEVELOP A PROGRAM

'
USEFUL TO

THE
ARTIST; A PROGRAM THAT SPEAKS

THE ARTIST'S LANGUAGE- THE TASK IS NOT AS HOPELESS AS IT APPEARS ; THE
SOFTWARE DESCRIBED SO FAR RUNS ON hIGh SCHOOL MATHEMATICS- It DEPENDS
ON THE DEVELOPMENT OF SPECIALIZED HARDWARE TO CONTROL TJAR10US ASPECTS
OF THE IMAGING PROCESS AND' 11*0 ANALYZE REAL AND PRERECORDED IMAGESo

4~-- 4

USING SPECIAL PROGRAMS AND PROGRAMMING TECHNIQUES ., THE COMPUTER
WILL BE ENDOWED WITH A MINIMAL I-Q- ON THE ARTIFICIAL INTELLIGENCE
SCALE- THE COMPUTER WILL NOT RESPOND IN A TOTALLY PREDICTABLE WAY- THE
DEGREE OF UNPREDICTABILITY IS DETERMINED BY THE ARTIST-

ENCLOSED WITH THIS REPORT IS A FIRST ATTEMPT AT A PROGRAM OF
THIS TYPE- THE IMAGING PROCESS IS CONTROLLED EITHER NUMERICALLY AS IN
DON MCARTHUR'S XY GENERATOR . OR WITH. DIGITAL TO ANALOG CONVERTERS
IMAGES ARE ANALYZED USING TEE ANALOG TO DIGITAL CONVERTERS- FINALLY]
THE ARTIST AND THE COMPUTER CONVERSE USING THE TELETYPE AND THE REAL-
TIME INTERFACE-

THE PROGRAM POLLS A SET OF DATA BUFFERS (RESERVED AREAS OF
COMPUTER MEMORY) EVERY FIELD . EACH DATA BUFFER CONTROLS A PARTICULAR
HARDWARE MODULE- - THE DATA IN TEE BUFFERS IS TIME DEPENDENT ALLOWING
FOR THE CREATION OF COMPLEX TIMING PATTERNS USING THE .FIELD AS THE
BASIC TIME UNIT-

AT PRESENT ONLY THE SIMPLEST CONTROL PARAMETERS ARE PROGRAMMED-
I AM MODIFYING THE PROGRAM TO ACCEPT TELETYPE INPUT IN REAL-TIME-
THIS WILL ALLOW THE ARTIST TO TALK TO THE PROGRAM AND TO SYNTHESIZE AND
MODIFY IMAGES AS THEY ARE BEING GENERATED-

PAGE e

2-1 HARDWARE CONFIGURATION

CHAPTER 2 - DESCRIPTION OF MAIN PROGRAM

THE FIRST PROGRAM WAS DEVELOPED FOR WOODY VASULKA WHO USES
AN LSI-11 MICROCOMPUTER INTERFACED TO VIDEO SYNTHESIS MODULES INCLUD-
ING DIGITAL TO ANALOG CONVERTERS (D/A'S) ., ANALOG TO DIGITAL CONVERTORS
(A/DS)j DON MCARTEUR'S MODULES DESCRIBED ELSEWHERE IN THIS REPORTj
JEFF SCHIER'S ALU MODULES AND GEORGE BROWN'S MULTIPLE LEVEL KEYER-

THE D/A'S AND A/D'S ARE CONTROLLED TEROUGH FOUR WORDS IN
MEMORY AS FOLLOVS :

MCARTHUR'S MODULES ARE CONTROLLED THROUGH THE BUFFER MEMORY
WHICH APPEARS AS - NORMAL MEMORY TO THE PROGRAMe ANY LOCATION IN BUFFER
MEMORY CAN BE READ IN OR WRITTEN TOo AND ARITHMETIC AND LOGIC OPERATIONS
CAN BE PERFORMED THEREUPON* THIS TECHNIQUE OF " MEMORY-MAPPED 1/0 "
MAKES THE PROGRAMMER'S LIFE MUCH EASIER AND BESIDES IT'S QUICK ; IMPORT-
ANT BECAUSE ALL MODULES MUST BE UPDATED IN LESS THAN 1/6Z SEC- CONTROL
WORDS FOR MCARTHUR'S AND SCRIER'S MODULES ARE LOCATED IN THE UPPER
REACHES OF MEMORY AS FOLLOWS :

PAGE 3

-- 1~

I- DONOUT RED 16 :1 SELECT 171 e .4e'
DOtN0UT+Z GREEN 16 :1 SELECT 171f4Z

30 DONOUT+4 BLUE 16 :1 SELECT 171Z44
4 0 DONOUT+6 INVERSION REGISTER 171L746
S . LEDS LED DISPLAY 1715IL7
6
7 :

DONIN REAL TIME INPUT 17162L
DONSTA STAUS REGISTER 171776

9 , :a- JEFOUT RED ALU 171 IFV
JEFOUT+Z GREEN ALU 1711172

It . JEFOUT+4 BLUE ALU 171le4

I- LEWSTA STATUS WORD 167770
LEWCUT OUTPUT WORD 16777Z

3- LEWIN INPUT WORD 167774
4* LE17CFA CHANNEL ADDRESS 167776

G " G INITIALIZATION

G.E .1 GLOBALS AND SYSTEM MACROS

THE FIRST STEP IN THE PROGRAM IS- TO INITIALIZE THE MODULES ONEBY ONE SETTING EACH TO ITS NORMAL DEFAULT CONDITION . HOWEVER THERE'S ALITTLE HOUSEKEEPING TO BE DONE . THE TABLES AND DATA SUFFERS ARE DECLAREDAS GLOBAL VARIABLES WHICH ALLOWS THEM TO BE ASSEMBLED SEPERATELY FROMTHE MAIN PROGRAM . THIS IS DONE WITH THE FOLLOWING STATEMENT :

MORE ABOUT THESE TABLES . AND DATA BUFFERS IN CHAPTER 3 . NEXT THESYSTEM , MACROS ARE INVOKED WITH THE FOLLOWING STATEMENTS :
1)

	

BEGIN : .MCALL "" VZ . . ., .REGDEF .-- .EXIT

3)

	

" REGDEF

THE LABEL BEGIN IS USED BY THE LINKING LOADER TO IDENTIFY THEENTRY POINT TO THE MAIN PROGRAM . THIS IS DONE USING THIS STATEMENT ATTHE END OF THE PROGRAM :

THE . .VL . . MACRO IDENTIFIES THE MONITOR SYSTEM USED BY THE LSI-I1 " THE .REGDEF MACRO DEFINES THE'LSI-II'S INTERNAL REGISTERS USINGTWO CHARACTER MNEMONICS AS FOLLOWS :

" GLOBL

	

TABLES, EBUF, DBUF

. .VS . .

" END

	

BEGIN

PAGE 4

+___-___-_-_-_____-----___--_-------------------_--_-------_-_-----_---+

I " RQ GENERAL PURPOSE REGISTER QE . RI GENERAL PURPOSE REGISTER 13 "- RG GENERAL PURPOSE REGISTER ĉ
4" R3 GENERAL PURPOSE REGISTER 3S . R4 GENERAL PURPOSE REGISTER 4
6 " RS GENERAL PURPOSE REGISTER 5
7 " SP STACK POINTER REGISTER 68 . PC PROGRAM COUNTER REGISTER 7

Z-E-Z DIGITAL TO ANALOG CONVERTERS

THUS

I)

NOW WE'RE READY TO INITIALIZE THE D/A'S WHICH IS ACCOMPLISHED

MOV

	

I I C'r RZ

3) BGN1 : DEC R1?'

4)

	

MOV RVoIILEWCHA

6)

	

1:fEQ BGNI

MOV

	

117effVj t #LEWOUT

THE FIRST LINE OF CODE MOVES THE OCTAL NUMBER IVVZFL7 TO THE
OUTPUT WORD IN MEMORY WHICH CONTROLS THE D/A'S- THIS CAUSES THE D/A
TO OUTPUT A CONSTANT ZERO VOLTS (+leV= 1777e1V AND -10V= t) . THE
PREFIX I DEFINES A REAL NUMBERo AND THE PREFIX Qt DEFINES A LOCATION
IN MEMORY . HOWEVER THE DATA TRANSFER IS NOT CONSUMMATED UNTIL THE D/A
CHANNEL IS ADDRESSED THROUGH THE CHANNEL ADDRESS WORD- THERE ARE & D/A
CHANNELS NUMBERED Q-7- THEREFORE WE SET REGISTER ft EQUAL TO 8., OR OCTAL
12' (LINE G)- THEN WE COUNT DOWN REGISTER ft WITH A LOOP (LINES 3 .S AND
6) AND AT THE SAME TIME ENABLE THE D/A'S BY MOVING THE CONTENTS OF
REGISTER (I TO THE CHANNEL ADDRESS WORD (LINE 4)-

PAGE S

-___--------------___-------____-___---__--__---______-------------__s

e4 " 2 " 3 BUFFER MEMORY

AND WE INITIALIZE THE BUFFER MEMORY AS FOLLOWS :

1)

	

MOV

	

IDONOUT., RZ

CLR

	

(R2') {

:s)

	

CLR

	

(RZ) +

CLR

	

(Rf7) +

5)

	

CLR

	

(RP) +

6)

	

MOV #uEFOUT .PRV

7)

	

CLR

	

(`-?0) +

:LR

	

(R `)i

THIS CODE USES THE AUTO-INCREMENT MODE OF ADDRESSING (R)+
LINE 1 MOVES #DONOUT (17le42') INTO REGISTER B' " THEN WE CLEAR ThAT
MEMORY LOCATION AND ADD +Z TO REGISTER (t WHICH NOW POINTS TO THE NEXT
WORD IN MEMORY (LINES

	

THIS SETS THE RED.* GREEN AND BLUE 16 :1
SELECT CHANNELS TO BLACK AND- THE INVERSION REGISTER TO NORMAL OR NON-
INVERTING . SIMILARLY THE ALU'S ARE SET TO PASS RED oGREEN AND BLUE
RESPECTIVELY (LINES 6-S) .

PAGE 6

---a

2-2-4 DATA BUFFER CONTROL

THE MAXIMUM NUMBER OF DATA BUFFERS IS SET :

MOVE

	

il`2$. TMRY

THAT IS . THE PROGRAM TOLERATES NO GREATER TPIAN 16 BUFFERS
t OCTAL GQ) . THIS FACT IS RECORDED IN THE BYTE LABELLED TMRY "
EACH DATA BUFFER IS ASSOCIATED WITH FOUR PARAMETER WORDS AND
THESE 64 WORDS (4*64) ARE KEPT IN THE PARAMETER BUFFER PBUF . WE
INITIALIZE THIS BUFFER AS FOLLOWS :

PAGE 7

I) MOV lPBUF. RV

2) SUB I17aRV

3) BGNZ : CMPB TMRX+TMRY

4) bPL TMR

S) INCB TMRX

6) ADD #1 ¢. RV

7) CLR (RV)

¬i) MOV

S) MOVE TMRX. Rl

1 L7
) DEC RI

11) SWAB RI

12) ADD #DBUF.Rl

13) MOV RI .4(RQ)

1 4) CLR 6(Re)

15)

	

BR BGN2

16) PBUF : +"Q7L7.c~

AGAIN WE USE A LOOP ; WE SET REGISTER V TO TFE LOCATION OF
PBUF (LINES I AND Z_)- NOTE PBUF IS CREATED BY CAUSING THE PROGRAM
COUNTER (-) TO SKIP OVER 64 WORDS OF MEMORY (LINE 16)- THE LOOP
IS CONTROLLED BY TMRX AND TMRY- TMRX COUNTS UP TO THE MAXIMUM NUMBER
OF DATA BUFFERS .- THEN A BRANCKTO THE NEXT BLOCK OF CODE IS EXECUTED
(LINES 3 .*4 ., 5 AND IS)- THE FOUR PARAMETER WORDS ARE :

1* TIMING COUNTER
2 -*- TIMING INTERVAL
Jo POINTER TO DBUF
4- DATA-WORD

THE FIRST WORD IS CLEARED (LINE 7)- THE TIMING INTERVAL IS SET
TO A SINGLE FIELD (LINE 8)- NEXT ADDRESS OF THE DATA BUFFER IS CALCU-
LATED AND PUT IN THE THIRD WORD (LINES 9-13)- THERE ARE 16 DATA
BUFFERS EACH CONTAINING 12.8 WORDS-- THEREFOR THE

POINTER IS SET INITIALLY
AS FOLLOWS :

POINTER= IDBUF+(256*(TMRX-1))

THIS FORMULA IS CODED FROM RIGHT TO LEFT- IN LINE 9 TMRX IS
MOVED INTO REGISTER 1 ; THE DECREMENT INSTRUCTION IN LINE le SUBTRACTS
I FROM THE REGISTER ; THE SWAP BYTE INSTRUCTION IN LINE 11 EFFECTIVELY
MULTIPLIES THE REGISTER BY 256 (EQUIVALENT TO 8 LEFT SHIFTS) ; DBUF IS
ADDED TO REGISTER I IN LINE 12. AND FINALLY IN LINE 13 THE RESULT IS'
STORED IN THE PARAMETER BUFFER USING THE INDEXED ADDRESSING MODE
X(R) THE CONTENTS OF THE REGISTER PLUS THE INDEX PRODUCE THE EFFECTIVE
ADDRESS-

PAGE .8

4--

2--3 TIMING ROUTINE

2-3-1 INTERRUPT SERVICING

FROM HERE WE GO TO THE TIMING ROUTINE (TMR) - THIS ROUTINE EN-
ABLES THE 1/6Z SEC INTERRUPTS AND EVERY 116V SEC POLLS TEE PARAMETER
BUFFER CHECKING FOR TIME OUTS (TIMING COUNTER EQUAL TIMING INTERVAL)o
IF A DATA BUFFER TIMES OUT A BRANCH TO THE NEXT BLOCK OF CODE IS
EXECUTED-

THE BUFFER MEMORY TRANSFERS DATA TO THE MODULES DURING THE
VERTICAL INTERVAL BETWEEN EACH FIELD OF VIDEN THEN THE BUFFER MEMORY
GENERATES AN INTERRUPT TELLING THE COMPUTER TO GET WORKING ON DATA FOR
THE NEXT FIELD- THIS INTERRUPT IS ENABLED OR DISABLED WITH THE STATUS
WORD DONSTA- IF THE STATUS WORD EQUALS I THE INTERRUPT IS ENABLED ; IF
0 THE INTERRUPT IS DISABLED- SO MUCH FOR THE BUFFER MEMORY; THE LSI-11
HANDLES INTERRUPTS THUS* THE COMPUTER INTERRUPTS ITS NORMAL FLOW OF
OPERATIONS AND AS A PRECAUTION PUSHES TEE CURRENT PROGRAM COUNTER (PC
OR REGISTER 6) AND THE PROGRAM STATUS WORD (PSW > ONTO THE STACK- THE
STACK POINTER (SP) IS DECREMENTED BY 4- THEN THE COMPUTER GOES TO A
PREDETERMINED LOCATION IN MEMORY (IN THIS CASE LOCATION 170) AND USES
THE CONTENTS AS THE NEW PROGRAM COUNTER (PC)o EXECUTION BEGINS ANEW
FROM THE LOCATION POINTED TO BY @117e- USUALLY THIS IS AN INTERRUPT
SERVICE ROUTINES HOWEVER I HAVE TAKEN 'A SHORTCUT AS EXPLAINED BELOW . ,

PAGE S

A-- 4-

TMR : Nov ITXRlj@fl7L7

CLRE) TMRX

3) INC 41DONSTA

4) BR

5) TMRI : CLR @fDONSTA

6) ADD 4o SP

IN LINE I WE PREPARE FOR THE INEVITALBLE INTERRUPT BY LOADINGLOCATION 172' WITH THE LOCATION ITMRI ; THE LOCATION WHERE WE WILL RESUMEEXECUTION- NEXT THE BUFFER COUNTER (TMRX) IS CLEARED AND THE INTER-RUPT IS ENABLED (LINES 2 AND 3)- WE WAIT FOR THE
INTERRUPT BY EXECUT-ING THE BRANCH INSTRUCTION ON LINE 4- FOLLOWING THE INTERRUPT WE RETURNTO LINE 5 AND DISABLE FURTHER INTERRUPTS BY CLEARING THE STATUS WORD INTHE BUFFER MEMORY- THEN IN LINE 6 WE DO SOME HOUSEKEEPING, RESTORINGTHE STACK POINTER (SP) .

PAM le'

*- - - - - - - - - - - - - - - - " - - - - - --- - ---- - ---- - - --- - - ----- --- - --- - - - - - - - - - - - - - - - - -&

PAGE Il

-.___--__ ...

r.-3"E POLLING THE DATA BUFFERS

WE ARE NOW READY TO POLL THE DATA BUFFERS

1) MUV #PBUFpRQ7

SUB II?aRG

3) TMRS : CMPB TMRXjTMRY

4) BPL TMR

5) INCB TMRX

6) ADD I l III RG

7) MOVB TMRX.* Rĉ.

DEC

ADD f EBUF.- Re:

aQ) TSTB (RB)

ll} BEQ TMR2

1~) INC (RV)

13) CMP (RS')

14) BLE TMRZ

15) TMR3 : CLR (RI')

16) JSR PCj INT

17) BR TMRG

18) TMRX : BYTE Q

19) TMRY : -BYTE

AGAIN WE HAVE A LOOP SIMILIAR TO THE LOOP USED TO INITIALIZE
THE PARAMETER BUFFER . LINES 1 AND 9 LOAD REGISTER V WITH IPBUF-8 " IN
LINE s THE COUNTER TMRX (INITIALLY 0) AND THE NUMBER OF BUFFERS TMRY
ARE COMPARED. ASSUMING ALL THE BUFFERS WERE CHECKED WE BRANCH BACK TO
WAIT FOR THE' -NEXT INTERRUPT (LINE 4) . OTHERWISE WE INCREMENT REGISTER
¢ BY S (LINE 6) AND CHECK THE ENABLE BUFFER c LINES 7 TO 19) . IF THE
BUFFER IS DISABLED (THE CONTENTS OF LGCATION IEBUF+(TMRX-1) EQUAL Q')
WE BRANCH BACK TO TMR2 (LINE 11) " IF THE BUFFER IS ENABLED THE TIMING
COUNTER 19 INCREMENTED (LINE 14) AND COMPARED WITH THE TMING INTERVAL
(LINE 13) . IF THE COUNTER IS LESS THAN OR EQUAL TO THE INTERVAL WE
BRANCH BACK TO TMRc (LINE 14) . OTHERWISE WE CLEAR THE TIMING COUNTER
AND JUMP TO THE INTERPRETER ROUTINE (LINES 15 AND 16) " UPON RETURNING
FROM THE INTERPRETER (LINE 17) WE BRANCH BACK TO TMR2 COMPLETING THE
TIMING ROUNTINE . LINES 18 AND 19 RESERVE SPACE IN MEMORY FOR THE
BUFFER COUNTER TMRX AND THE NUMBER OF BUFFERS TMRY "

PAGE 1 2

--+

2-4 THE INTERPRETER

2-4-1 SUBROUTINE CROSS-REFERENCING

THE INTERPRETER READS A COMMAND

PAGE 13

WORD FROM THE DATA BUFFER AND

+__-___--__---__-__-------------------__-__-----_-----___--------_----

USES THIS WORD TO CREATE A SPECIAL JUMP SUBROUTINE INSTRUCTION- THE
SUBROUTINE IN TURN EXECUTES THE COMMAND READING ADDITIONAL DATA WORDS
FROM THE BUFFER AS REQUIRED-

1) INT : mov 4(RV)+R1

MOW (R1)+.vR^

3) ASL RZ

4) ADD #JbUFrRrZ

MOV (RS)sR2

6) SUB # INTI .,RE

7) MOV R6, INTl -c

8) CLR RS

9) JSR PCrEXIT

1Q) INTI : MOV RIp4(RV)

11) TST RS

I Z) BEft INT

13) RTS PC

REMEMBER THAT REGISTER V CONTAINS THE ADDRESS OF THE FIRST
PARAMETER WORD CONTROLLING THE DATA BUFFER- IN LINE I THE DATA POINTER
4(Re) IS MOVED TO REGISTER I- TEEN THE COMMAND WORD (RI)4- IS MOVED
FROM ThE DATA BUFFER TO REGISTER 2 ; AND THE DATA POINTER IN AUtO-INCRE-
MENTED (LINE Z')- THE JUMP SUBROUTINE TFROUGH THE PROGRAM COUNTER IN-
STRUCTION (LINE 9) IS DECODED BY THE ASSSEMBLER AS TWO WORDS - Ve4767o
XXXXXX- THE FIRST THREE DIGITS OF THE FIRST WORD M4) INDICATE A jSR
INSTRUCTION- THE FOURTH DIGIT (7) INDICATES THAT REGISTER 7 (PC) WILL
BE THE LINKAGE POINTER- THE - FIFTH AND SIXTR DIGIT REPRESENT TFE DESTI-
NATIONj THE FIFTH DIGIT SPECIFIES THE INDEX ADDRESSING MODE AND ThE
SIXTE DIGIT INDICATES ThAT THE INDEX VALUE FOLLOWS THE INSTRUCTION-
THE INDEX VALUE PLUS THE PROGRAM COUNTER EQUALS THE DESTINATION ADDRESS-
IN LINES 3 - 6 THE INDEX VALUE IS CALCULATED USING THESE FORMULAE :

INDEX = SUBROUTINE ENTRY PT-IINTI

SUBROUTINE ENTRY PT = IJBUF+(Z*COMMAND WORD)

THE INDEX VALUE IS MOVED TO LOCATION INT-'e_ (LINE 7)- REGISTER 5 IS A
DONE FLAG SET FOLLOWING ThE OUTPUT COMMANDo IT IS CLEARED INITIALLY
(LINE 8)- THE JUMP SUBROUTINE INSTRUCTION IS EXECUTED (LINE 9)o THE
PROGRAMEXECUTES THE APPROPRIATE SUBROUTINE, AND RETURNS TO RESTORE THE
DATA BUFFER POINTER (LINE If)- THE DONE FLAG (R5) IS TESTED (LINE
11) ; IF ZERO THE PROGRAM BRANCHES BACK AND READS THE NEXT COMMAND WORD
(LINE 12) .- OR RETURNS TO THE TIMING ROUTINE (LINE 13)-

A CROSS-REFERENCE TABLE JBUF FOLLOWS THE INTERPRETERo THE ENTRY
POINTS FOR THE SUBROUTINES ARE STORED SEQUENTIALLY AND ARE ACCESSED
WITH THE COMMAND WORD .

e:-5 TIMING CONTROL SUBROUTINES

2-5-1 SET THE TIMING INTERVAL

COMMAND WORD VV SETS THE TIMING INTERVAL (SECOND WORD ON TEE
PARAMETER LIST) EQUAL TO THE NEXT WORD IN THE BUFFER-

1)

	

SUBve :

	

MOV

	

(Rl)+j 2 (R2')

2)

	

RTS PC

2 .5 .2 ADD TO THE TIMING INTERVAL

COMMAND WORD Ql ADDS THE NEXT WORD IN THE DATA BUFFER T O THE
TIMING INTERVAL .

2)

	

RTS PC

2 " 5 " 3 SUBTRACT FROM THE TIMING INTERVAL

COMMAND WORD Q2 SUBTRACTS TEE NEXT WORD IN THE DATA SUFFER FROM
TEE TIMING INTERVAL .

1)

	

SUBfl2 : SUB (RI)+,p2(R2)

SUB2' 1 :

	

ADD

	

(RI)+, Z (R2')

RTS PC

2 " 5 " 4 COMPLEMENT THE TIMING INTERVAL

COMMAND WORD 03 COMPLEMENTS
THE

TIMING INTERVAL-# EQUIVALENT TO
177777- TIMING INTERVAL .

SUB23 :

	

COM

	

2 (R2')

RTS PC

PAGE 15

.&.__-__------------_--_------- ;__---------------------------------------4

2 " 5 ".5 SHIFT THE TIMING INTERVAL RIGHT

COMMAND WORD 74 SHIFTS THE TIMING INTERVAL TO THE RIGHTo THE
MOST SIGNIFICANT FLIT (BIT 15) IS CLEAREDo EQUIVALENT TO TIMING
INTERVAL/4 .

I)

	

SUBQ4 : CLC

3)

SUBf75 : CLC

ROR

	

2- (R0)

RTS PC

ROL

	

G (RL')

RTS PC

C- . ; .6 SHIFT THE TIMING INTERVAL LEFT

COMMAND WORD 75 SHIFTS THE TIMING INTERVAL TO THE LEFT] THE
LEAST SIGNIFICANT FLIT (BIT 2') IS CLEAREDo- EQUIVALENT TO S* TIMING
INTERVAL.

COMMAND WORDS 26 AND Q? ARE NOT USEDi THEREFORE THEY ARE CROSS-
REFERENCED TO THE ERROR ROUTINE ERR IN JBUF "

2 .6 DATA CUT SUBROUTINES

Z-6-1 SET THE DATA WORD

COMMAND WORD IQ SETS THE DATA WORD (FOURTH WORD IN THE PARA-
METER LIST) EQUAL TO THE NEXT WORD IN THE DATA BUFFER-

1)

	

SUBIV :

	

MOV

	

(Rl)+.,6(RL)

G)

	

RTS PC

E-6-2' INCREMENT THE DATA WORD

WORD+1
COMMAND WORD 11 INCREMENTS T1-=E DATA WORDp EQUIVALENT TO DATA

1) SUB11 : INC 6(R2')

E)

	

RTS PC

c-6-3 DECREMENT THE DATA WORD

COMMAND WORD 12 DECREMENTS THE DATA WORD., EQUIVALENT TO DATA
WORD-1

1)

	

SUB112 : DEC 6CR7)

RTS PC

E-6-4 ADD TO THE DATA WORD

COMMAND WORD 13 ADDS THE NEXT WORD IN THE DATA BUFFER TO THE
LATA WORD .

RTS PC

2-6-5 SUBTRACT FROM THE DATA WORD

COMMAND WORD 14 SUBTRACTS THE NEXT WORD IN THE DATA BUFFER
FROM THE DATA WORD-

I)

	

SUB14 :

	

SUB

	

(Rl)+.6(R7)

RTS PC

E-6-6 COMPLEMENT THE DATA WORD

COMMAND WORD 1 5 COMPLEMENTS ThE DATA WORDo EQUIVALENT TO
177777-DATA WORD-

1)

	

SUB1 5 :

	

COM

	

6(Rf)

RTS PC2)

PAGE 18

1) SUB13 : ADD (R1)+,,6(R7)

C-6-7 SHIFT THE DATA WORD RIGHT

COMMAND WORD 1 6 S1-I FTS THE DATA WORD TO THE RIGHT, THE MOST
SIGNIFICANT BIT (BIT 15) IS CLEAREDo EQUIVALENT TO DATA WORD/2-

l)

	

SUB16 : CLC

ROR

	

6(RFV)

3)

	

RTS PC

BIT N BECOMES BIT N-I

15

	

Q

Z-6-8 SHIFT THE DATA WORD LEFT

BIT N BECOMES BIT N-1

PAGE 1 S

-> BIT Z DROPPED

COMMAND WORD 17 SHIFTS THE DATA WORD TO THE LEFT.* THE LEAST
SIGNIFICANT HIT (BIT Q) IS CLEARED, EQUIVALENT TO 2* DATA WORD-

BIT 1 5 DROPPED

--------___-__-----------___-__-------_----__-_____--____-____-_______- ...

----------__-----------

----------__-----------

1) SUB17 : CLC

2) ROL 6(R$)

3) RTS PC

5-6-9 ROTATE THE DATA WORD RIGHT

COMMAND WORD 2V ROTATES THE DATA WORD TO THE RIGHTo SHIFTS
THE BITS RIGHT AND THE LEAST SIGNIFICANT BIT (BIT 0) IS ROTATED
AROUND TO BECOME THE MOST SIGNIFICANT BIT (BIT 15)-

1 5

	

2'

---------------------- f

2-6- 1(t ROTATE THE DATA WORD LEFT

COMMAND WORD c1 ROTATES THE DATA WORD TO THE LEFTo SHIFTS THE
BITS LEFT AND THE MOST SIGNIFICANT BIT (BIT 15) BECOMES THE LEAST
SIGNIFICANT BIT (BIT V)- .-'1 5

	

L,

<- BIT 1 5 BECOMES BIT Y

PAGE 4:V

-> BIT Q BECOMES BIT 15

-_--___-__-_--___-------_--_---_-_-----__-__-_-------__-_--_-__--__-__

1) 5UBG9 : MOV 6(RI') .pRG

S) ROR RG

3) ROR 6(RV)

RTS PC

<-
-___------__---_----_--

--_--_-_-__-_---------

1) SUBG1 : MOV 6(RQ)-Re';

C) ROL R2

3) ROL 6(RV)

4) RTS PC

2.6 " 11 BIT CLEAR WITH DATA WORD

COMMAND WORD E2 TAKES THE NEXT WORD IN THE DATA SUFFER AND
CLEARS EACH BIT IN THE DATA WORD WHICH CORRESPONDS TO A SET BIT IN THE
FORMER, EQUIVALENT TO :

DATA WORD=

	

NEXT WORD IN BUFFER DATA WORD

NEXT WORD IN BUFFER

	

2 222 eel x'12 ell 122
DATA WORD

	

2 222 22l 221 22l 22l

DATA WORD

1)

	

SUB22 : BIC (Rl)+,6(R2)

G) RTS PC

2 " 6 .12 BIT SET WITH DATA WORD

v 22ft egg 221 e12 121

COMMAND WORD 23 TAKES THE NEXT WORD IN THE DATA BUFFER AND SETS. THE CORRESPONDING BITS IN THE DATA WORD, EQUIVALENT TO :

DATA WORD= NEXT WORD IN BUFFER DATA WORD

NEXT WORD IN BUFFER

	

v 222 22l x'12 ell 122
DATA WORD

	

2 222 2?1 22l 22l 22l

DATA WORD 2 22f 22l 21l ell 121

1)

	

SUBL3 :

	

BIS

	

(Rl)+j 6(R2)

r)

	

RTS PC

2-6-13 XOR WITH DATA WORD

COMMAND WORD S4 TAKES THE NEXT WORD IN THE DATA BUFFER AND
EXCLUSIVE OR'S IT WITH THE DATA WORD .

NEXT WORD IN BUFFER

	

0 fvv vvi viv Oil lve
DATA WORD

	

f eve ZVI Zvi 701 vvi

DATA WORD

	

0 Zee eve oil ele lei

COMMAND WGIDS 25o Z6 AND 27 ARE NOT USED, THEREFORE THEY ARE
CROSS-REFERENCED TO THE ERROR ROUTINE ERR IN JBUF .

I) SUB24 : MOV (Rl)+oRZ

.2) XGR RQ 6 (RO)

3) RTS PC

2 .7 DATA IN SUBROUTINES

Z"7-1 INPUT DATA WORD

COMMAND WORD 3¢' CALLS THE INPUT ROUTINE AND SETS THE DATA WORD
EQUAL TO INPUT DATA (IN REGISTER 2)-

G.7 .2 ADD INPUT TO DATA WORD

COMMAND WORD 31 CALLS THE INPUT ROUTINE AND ADDS THE INPUT DATA
TO THE DATA WORD .

SUB31 : JSR

3)

	

RTS PC

PC ., Ii

ADD

	

R2+ 6(Ri?)

2 " 7 .3 SUBTRACT INPUT FROM DATA WORD

COMMAND WORD 32 CALLS THE INPUT ROUTINE AND SUBTRACTS THE INPUT
DATA FROM THE DATA WORD .

PAGE 23

1) SUB32 : JSR PC .-IN

2> SUB R2 r 6 (Re)

3) RTS PC

1) SUB30 : JSR PCv IN

MOV Re's 6(RV)

3) RTS PC

2.7 .4 BIT CLEAR INPUT WITH DATA WORD

COMMAND WORD 33 CALLS THE INPUT ROUTINE AND CLEARS EACH BIT IN
THE DATA WORD AS IN SUBZZ .

Q

2*05 SIT -SET INPUT WITH DATA WORD

COMMAND WORD 34 CALLS THEANPUT ROUTINE AND SETS EACH SIT IN
THE DATA WORD AS IN SUB23 .

1)

	

SUB34 : JSR PCoIN

2)

	

HIS

	

RQ6(RV)

3)

	

RTS PC

2*7-6 XOR INPUT WITH DATA WORD

COMMAND WORD 35 CALLS THE INPUT ROUTINE AND EXCLUSIVE OR `S THE
INPUT DATA WITH THE DATA WORD At IN SUBZ4-

COMMAND WORDS 36 AND ,37 ARE NOT USEDo THEREFORE THEY ARE CROSS-
REFERENCED TO THE ERROR ROUTINE ERR IN JBUF .

PAGE 24

1) SUB35 : JSR PCJIN

XOR RZP6(RV)

3) RTS PC

SUB33 : JSR PCOIN

BIG RQ 6 (RO)

RTS PC

Z-8 BUFFER CONTROL SUBROUTINES

2-8-1 LOOP ROUTINE

COMMAND WORD 40 THIS SUBROUTINE USES THE NEXT THREE WORDS IN
THE DATA BUFFER TO CREATE A REPEATING LOOP IN THE0ATA BUFFER-

	

THE
THREE WORDS ARE :

I* A COUNTERo INCREMENTED EACH REPETITION
W MAXIMUM NUMBER OF REPETITIONS
31 POINTER TO THE TOP OF THE LOOP

EACH TIME A LOOP COMMAND (4e) IS ENCOUNTERED IN THE DATA BUFFERJ
THE LOOP SUBROUTINE FIRST COMPARES THE COUNTER WITH THE MAXIMUM NUMBER
OF REPETITIONS (LINE l)- IF THE COUNTER IS LESS THAN THE MAXIMUM NUMBER
THE COUNTER IS INCREMENTEN TEE POINTER TO DBUFATHIRD WORD IN THE PARA-
METER LIST) IS UPDATED WITH TEE POINTER TO THE TOP OF THE LOOP, AND
RETURN TO TI-:E INTERPRETER (LINES 3 - 5)- IF TEE COUNTER IS EQUAL TO
OR GREATER THAN THE COUNTER WE BRANCH TO LOOP I (LINE Z)o CLEAR THE
COUNTER (LINE 60 STEP THE DATA BUFFER POINTER (LINE 7)j AND RETURN TO
THE INTERPRETER (LINES) .

1) LOOP :

0

5)

6) LOOPI :

7)

8)

COMMAND WORDS 41-45 ARE NOT USEDi THEREFORE THEY ARE CROSS-
REFERENCED TO THE ERROR ROUTINE ERR IN JBUF- THE ERROR ROUTINE IS IN
REALITY THE EXIT ROUTINE (SEE SECTION Z-9-5)-

PAGE 25

CMP 010KRI)

BPL LOON

INC (RI)

Mov 4(RI)jRl

RTS PC

CLR (RI)

ADD 16+R1

RTS - PC

Z- S

	

PROGRAM CONTROL SUBROUTINES

1-9-1 INPUT ROUTINE

TEE INPUT SUBROUTINE SERVICES ThESE FOURTEEN INPUT DEVICES :

1-8 .

	

DATA TABLES DEFINED BY USER
9-10

	

ANALOG TO DIGITAL CONVERTERS
IS

	

REAL TIME INTERFACE
14

	

RANDOM NUMBER GENERATOR

THE FIRST PART OF THE INPUT ROUTINE RETRIEVES DATA FROM THE
TABLES (

	

INPUT DEVICES 1 -8

I)

	

I

	

IN :

	

mov

	

(RI)+PR'Z

Z)

	

CMP

	

Roo I 1 1

BPL INI

4) 0V (RI) 4- oR3

5) DEC

6) ASL R2

7) ASL R12,

8) ASL RZ

9) ASL R2-

10) DEC R3

11) ASL R3

12) ADD R3, RZ

IN LINE I THE INPUT DEVICE NUMBER IS TRANSFERRED FROM THE DATA
BUFFER TO REGISTER li AND THE BUFFER POINTER INCREMENTED . IF THE DEVICE
NUMBER IS GREATER THAN 8 BRANCH TO INI (LINES Z AND 3 K IF NOT MOVE
THE TABLE ENTRY NUMBER TO REGISTER Z AND CALCULATE THE LOCATION OF THE
EATA (LINES 4 TO 13) AS FOLLOWS :

LOCATION= ITABLES+Z*(ENTRY NUMBER-I)+16*(DEVICE NUMBER-1)

FINALLY REGISTER S TRANSFORMS ITSELF INTO THE REQUESTED DATA
LINE 14) AND WE RETURN TO THE CALLING SKRUUTINE (LINE 15

THE SECOND PART OF THE INPUT ROUTINE SERVICES THE ANALOG TO
DIGITAL CONVERTERS (INPUT DEVICES S- 12) :

IN I :

	

Cylp

	

RZ.-Ils

BPL INS

3)

	

SUB

	

11 IARZ

4)

	

NOV RWAILEWCHA

5)

	

MOV @ILEWINoRE

AGAIN WE TEST THE DEVICE NUMBER* IF GREATER THAN 12 BRANCH TO
INZ (LINES I AND S)- THE CHANNEL ADDRESS IS CALCULATED AND MOVED To
THE CONTROL WORD LEWCHA (LINES 3 AND 4) - THE DATA APPEARS AT THE INPUT
WORD LEWIN AND IS TRANSFERRED TO REGISTER ĉ. (LINE 5

	

WE RETURN TO THE
CALLING SUBROUTINE (LINE 6)o

13) ADD ilABLESoRZ

14) mov (RZ)oRZ

15) RTS PC

THE THIRD PART OF THE INPUT ROUTINE SERVICES DON MCARTHUR'S REAL
TIME INTERFACE (A REGISTER LOADED FROM THE OUTSIDE WORLD USING TOGGLE
SWITCHESo INPUT DEVICE NUMBER 13) :

A MODEL OF THE EFFICIENCY OF MEMORY MAPPED I/Oj BUT FIRST WE
TEST THE DEVICE NUMBER- IF GREATER THAN 13 BRANCH TO IN3 (LINES I AND

) . IN A SINGLE LINE OF CODE THE DATA IS TRANSFERRED TO REGISTER Z
LINES 3 > AND WE RETURN TO THE CALLING SUBROUTINE (LINE 4

	

GOOD
WORK DON!

THE FINAL SECTION OF THE INPUT ROUTINE IS A RANDOM NUMBER
GENERATOR OF SORTS (INPUT DEVICE 14

1) IN3 : CMP RZ .,117

2) BPL IN4

mov TEMPjR2

4) CLC

5) ROL TEMP

6) BCC RNDI

7) INC R IS

8) RNDI ROL TEMP+Z

9) BCC RNDZ

17) INC RS

1) INS : CMP RQ116

2) BPL IN3

3) MOV fIDONINoRZ

44) RTS PC

TEST THE DEVICE NUMBERo IF GREATER THAN 14 RETURN TO THE CALLING
PROGRAM VIA INA (LINES lo 'Z AND 2Q)- NOW WE PERFORM A LEFT SHIFT ON
TEMP (A GIANT 64 BIT WORD)- THIS IS - DONE IN FOUR STEPS OF SIXTEEN BITS
EACH THROUGH THE CARRY REGISTER

	

I SIT

64 48 47 32 31 16 15 (t
-------- -------- -------- --------

<-TEMP+6 - <-TEMP+4 <-TEMP+Z <-TEMP

+___m---

C4

	

C3

	

Cz

	

C I

TEMP= TEMP+(-I)*(TIMP+C4+C3+CZ+Cl)

THE INITIAL VALUE OF TEMP IS STORED IN REGISTER Z AND THE CARRY
REGISTER CLEARED (LINES 3 AND 4)- NOW THE SHIFTS ARE EXECUTED AND THE
RESULTANT CARRYS ADDED TO REGISTER- 2 (LINES 5 - 16) - WE WRAP IT UP
(LINES 17 AND 18), MOVE ThE LOW ORDER SITS TO REGISTER 2 (LINE 19)A
AND RETURN TO WHERE WE CAME FROM (LINE 20 SPACE FOR TEMP IS CREATED
WITH THE -WORD MACRO (LINE ZI)-

PAGE Z9

1l) RN D2 : ROL TEMP+4

IZ) BCC RND3

13) INC

14) RND3 : ROL TEMP+6

15) BCC RND4

16) INC RE

17) RND4 : COM RE

18) ADD REi TEMP

19) MOV TEMP ., RE

ZZ) IN4 : RTS PC

zi) TEMP : -WORD ' VjQQV

Z-9-2 OUTPUT ROUTINE

THROUGH AN UNACCOUNTABLE MENTAL LAPSE ON MY PARTS THE DATA
BUFFERS CORRESPOND DIRECTLY TO TEE OUTPUT DEVICES : DATA BUFFERSETC 1-8
CONTROL THE A/D'S, DATA BUFFER S CONTROLS THE RED 16 :1 SELECTS ETC .
TEE FIRST PART OF THE OUTPUT ROUTINE CONTROLS TYE A/D'S :

IF THE BUFFER NUMBER IS GREATER THAN 8 BRANCH TO OUT I

	

(LINES I
AND 2)- IF NOT CALCULATE TEE CHANNEL ADDRESS AND MOVE IT TO THE
CONTROL WORD LEWCHA (LINES 3 AND 5) . NEXT MOVE THE DATA TO THE
OUTPUT WORD LEWOUT, SET THE DONE FLAG (REGISTER 5)j AND RETURN TO THE
CALLING PROGRAM (LINES 6 v 8)-

1) OUT : CMPB TMRXoill

BPL OUTI

3) MOVB TMRXxR2,

4) DEC RZ . -

5) MOV RQ11LEWCHA

6) MOV 6(RV)o@fLEWGUT

7) INC R5

RTS PC

COMMAND
DEVICES :

WORD 46 - THE OUTPUT SUBROUTINE SERVICES THESE FIFTEEN

1-9 .1 DIGITAL TO ANALOG CONVERTERS
9i RED 16 :1 SELECT CHANNELS
IN GREEN 16 :1 SELECT CHANNELS
11 . BLUE 16 :1 SELECT CHANNELS
IS INVERSION REGISTER
13- RED ALU (ARITHMETIC LOGIC UNIT
14 ; GREEN ALU
15* BLUE ALU

THE SECOND PART OF THE ROUTINE CONTROLS MCARTHUR'S 16 :1 SELECTS
AND INVERSION REGISTER :

1)

	

OUT I :

	

CNPB

	

TMRX, A` 15

G)

	

BPL OUTZ

MOVB TMRXsRe'_

4)

	

SUB

	

I I v RG

ASL R

6)

	

ADD

	

DONOUT., RZ

7)

	

MOV

	

6(R7) .* (Rc')

8) INC R5

9)

	

RTS PC

IF THE BUFFER ,NUMBER IS GREATER THAN IG BRANCH TO OUTG C LINES
1 AND c) . IF NOT CALCULATE THE OUTPUT ADDRESS (LINES 3 - 6) :

OUTPUT ADDRESS= #DONOUT+f *(TMRX-9)

FINALLY WE TRANSFER THE DATA WORD TO THE OUTPUT ADDRESS, SET THE
DONE FLAG ., AND RETURN TO THE CALLING PROGRAM (LINES 7 - S) .

PART THREE OF THE ROUTINE IS SIMILAR ; IT CONTROLS JEFF SCHIER'S
ARITHMETIC LOGIC UNITS :

1) OUTZ : CMPB TNRXjIZQ

BPL OUTS

MOVB TMRX.RG

4) SUB 11 5s R

ASL RZ

6)

	

ADD IJEFOUToRZ

7)

	

NOV

	

6CRV)s CRS)

S) GUTS : INC R5

9)

	

RTS PC

IF THE BUFFER NUMBER IS GREATER THAN 15o GAME OVERj WE RETURN
TO THE CALLING PROGRAM VIA OUTS (LINES lo Q 8 AND 9

	

IF NOT CALCU-
LATE THE OUTPUT ADDRESS (LINES 3 AND 4) :

OUTPUT ADDRESS= IJEFOUT+Z*CTMRX-13)

FINALLY WE OUTPUT THE DATA WORDo SET THE DONE FLAGo AND RETURN (LINES
7 - 9

Z-9-3 EXIT ROUTINE

COMMAND WORD 47 - THIS SUBROUTINE IS INVOKED OVERTLYTY COMMAND
WORD 47 AND COVERTLY BY V6w,f7j 25* 26; Z& 36, 37, 41, 421 43, 44 AND
45- IT ENDS THE PROGRAM IN A RELATIVELY PAINLESS MANNER AND RETURNS
CONTROL TO THE 'SYSAM MONITOR :

1) ERR :

2) EXIT : -EXIT

CHAPTER 3 - DESCRIPTION OF DATA BUFFERS

3 " 1 SOFTWARE CONFIGURATION

PAGE 3 3

LOCATION LABEL FUNCTION

l71' INTERRUPT VECTOR

1BZQ BEGIN : INITIALIZATION
1146 PBUF : CONTROL WORDS FOR DATA BUFFERS
1346 TMR : TIMING ROUTINE
147V INT : INTERPRETER
1 .536 JBUF : COMMAND WORD_ TO SUBROUTINE CROSS-REFERENCE
1656 SUBVZ : TIMING CONTROL SUBROUTINES
1664 SUBQ1 :
1672. SUBa 1' :
17L7a SUBZ3 :
17176 SUBIZ4 :
1716 S UBf7 5
1756 SUBIV : DATA OUT SUBROUTINES
1734 SUB11 :
174E SUBIZ :
i 75f1 SUB13 :
1756 SUB14 :
1764 SUB15 :
1772 SUB 16 :,
G 7 e, 2 SUB1 7 : _ _
21? 1 2 SUBZV
Z1'c2.6 SUBZI :
ZK 42. SUBZZ
Z~J SUBZ3 :
2.2'56 SUBZ4 : '-
2.066 OUT : OUTPUT ROUTINE
ZZ16 SUBW : DATA IN SUBROUTINES
Z 2.31' SUB31
ZZ 42. SU63Z
GG54 SUB33 :
12-266 SUB34 :
21 32'7 SUB35 :
2312 I11 : INPUT ROUTINE
ZS1Z LOOP : LOOP ROUTINE
2.540 EXIT : EXIT ROUTINE

2541 TBLI : TABLES
741

	

EBUF :

	

ENABLE BUFFER
2_751

	

DBUFI : DATA BUFFERS

16777V LEWSTA : STATUS WORD
167772 LEWOUT : OUTPUT WORD
167774 LEWIN : INPUT WORD\
167776 LEWCH,A : CHANNEL ADDRESS

1 71 Q'4 7	DONOUT: RED

	

16:1

	

SELECT
171 Q'42

	

GREEN

	

16:1

	

SELECT
171L744

	

BLUE 16 :1 SELECT
171L7 46

	

INVERSION REGISTER

171197 JEFOUT : RED ALU
1711 P2_

	

GREEN ALU
1711L74

	

BLUE ALU

171519 LEDS :

	

LED DISPLAY

17162_Q DGNIN : REAL-TIME INPUT

171776 DONSTA : STATUS REGISTER

THE DATA BUFFERS ., BEGINNING AT LOCATION 2_541 . BECOME A SEPERATE
PROGRAM WHICH IS LINKED TO THE MAIN PROGRAM BY THE SYSTEM LOADER BEFORE
EXECUTION ." FIRST WE ESTABLISH- THE GLOBALS IDENTIFYING THE LABELS COMMON
TO BOTH THE MAIN PROGRAM AND THE DATA PROGRAM :

.GLOBAL TABLES ., ESUF.P DSUF

3 . 2e ; TABLES

THERE ARE EIGHT-TABLES OF SIXTEEN WORDS (8*16= 128) " THE
FOLLOWING SEQUENCE OF CODE WILL RESERVE MEMORY FOR THE TABLES :

PAGE 3 5

1) TABLES :

TBL1 :

3) " =TABLES*'cL~`

4) TBL2 :

5) " =TABLES +4Q

6) TBL3 :

7) .=TABLES+6V

TBL4 :

9) -=TABLES +177

1e') TBLS :

11) " =TABLES+I .E(1

Imo) TBL6 :

13) " =TABLES+14?

14) TBL7 :

15) . =TABLES+I 6fl

16) TBLB : .

17) .=TABLES+EVV

NOTE THE FIRST TWO LABELS ARE SYNONYMOUS (TABLES AND TABLI,
LINES I AND c) FOR CONVENIENCE . AFTER EACH. TABLE HEALING (TBLIs TBLSS,
ETC) A BLOCK OF SIXTEEN WORDS IS RESERVED BY SETTING THE PROGRAM
COUNTER C .) TO THE NEXT HEADING OR LABEL CLINE 31 ETC)

3*3 THE ENABLE BUFFER

FOLLOWING THE TABLES IS THE ENABLE BUFFER (EBUF)o A SHORT
BUFFER OF SIXTEEN BYTES (8 WORDS) SET Z FOR AN INACTIVE BUFFERo AND
I FOR AN ACTIVE BUFFER-

EBUF : -BYTE

3)

	

.=EBUF+IZ

-BYTE

IN THE EXAMPLE ONLY BUFFERS 9o IN 11 AND 12 ARE ACTIVE AND THE
REMAINDER INACTIVE- THE BLOCK OF EIGHT WORDS IS CREATED

	

LINES I AND Z)
AND THE PROGRAM COUNTER SET TO THE NEXT LABEL (LINE 3

3-4 DATA BUFFERS

NOW WE RESERVE MEMORY FOR THE SIXTEEN DATA BUFFERS AS FOLLOTS :

1) DBUF :

2) DBUFI :

3)

	

.=DBUF+4VV

4) DBUFZ :

5)

	

.=DBUF+IVVL7

6) DBUF3 :

7)

	

.=DBUF+14ZL7

8T DSUF4 :

127) DBUF5 :

11)

	

*=DBUF+24EV

12) DBUF6 :

13)

	

--.=DBUF+3VZe

14) DBUF7 :

15)

	

-=DBUF+34017

16) DBUFS :

17)

	

.=DBUF+4077

18) DBUF9 :

19)

	

*=DBUF+440f

PAGE 3 7

AGAIN THE FIRST TWO LABELS (DBUF AND DBUFlo LINES I AND 2)
ARE SYNONYMOUS- AFTER EACH BUFFER HEADING (DBUFl-p DBUFG .- ETC) A BLOCK
OF ONE HUNDRED AND TWENTY- EIGHT WORDS

	

I S RESERVED B4Z o V ~ I VZfl " j L l V l

+l aV

Q' V

-1 ¢V

---------- --------- ---------_-____-__

TT = Q'

	

T = 16 FIELDS
Q,

	

l

DELTA T= I FIELD

GK) DBUF1 7 :

~3) .=DBUF+5Q'QL~

G2) DBUFl I

23) .=DBUF+547Q

24) DBUFI'r-' :

25) .=DBUF+6Qee

26) DBUF 13

G7) " =DBUFt-649F

28) DSUF l 4

4S) " =DBUF+70Qe

3Q') DSUF1 5 :

31) .=DBUF+74VQ

32) DBUF1 6 :

33) . =DBUF+I VVVl2`Z

34) .END TABLES

DELTA 'V= I

CHAPTER 4 - PROGRAMMING TECENIQUES

4 .1 CREATING TABLES

PAGE 3 9

4-1-1 A SAMPLE TABLE

TABLES ARE FILLED IN AS ILLUSTRATED IN ThIS EXAMPLE :

l) TBLI : -WORD 10421V

-WORD 177777

-WORD 167356

4) .WORD 1567"35

5) .WORD 146314

6) 7WORD 135673

7) -WORD 1252-2 5Z

5) -WORD 114631

9) -WORD 73567

1a) -WORD 631-46

12) -WORD 5352.5

I3) -WORD 43Ia4

13) .WORD 31463

14) -WORD 31 V 42-

15) -WORD 1 7 42.1

16) .WORD

THIS TABLE CONTAINS TEE SIMPLEST BAR PATTERNS AVAILABLE ON

LON MCARTHUR'S 16 :1 SELECT MODULES .

OTHER TABLES ARE USEFUL, SHADED BAR PATTERNS o CROSSHATCH
PATTERNS AND MASKS FOR EXAMPLE .

LINE I -REPRESENTS A SCUD FIELD
LINE Z - TWO HORIZONTAL BARS
LINE 3 -FOUR HORIZONTAL BARS
LINE 4 -EIGHT HORIZONTAL BARS
LINE 5 - SIXTEEN HORIZONTAL BARS
LINE 6 - THIRTY-TWO HORIZONTAL BARS
LINE 7 -SIXTY-FOUR HORIZONTAL BARS
LINE 8 -ONE HUNDRED AND TWENTY-EIGHT HORIZONTAL BARS
LINE 9 - TWO VERTICAL BARS
LINE 10 -FOUR VERTICAL BARS
LINE 11 - EIGHT VERTICAL BARS
LINE 12 - SIXTEEN VERTICAL BARS
LINE 13 - THIRTY- TWO VERTICAL BARS
LINE 14 - SIXTY- FOUR VERTICAL BARS
LINE 15 -ONE HUNDRED AND TWENTY- EIGHT VERTICAL BARS
LINE 16 - TWO HUNDRED AND FIFTY-SIX VERTICAL BARS

4-2 CREATING A DATA BUFFER

4-Z-1 A SAMPLE BUFFER

THE DATA BUFFER IS FILLED WITH A SEQUENCE OF COMMAND WORDS USED
BY THE MAIN PROGRAM TO CONTROLo IN THIS EXAMPLEo THE MCARTHUR RED 16 :1
SELECT MODULE . FIRST THE TIMING INTERVAL IS SET TO I SEC (60 FIELDS,
LINE I)- THE-COMMAND WORD IS e+-THE INTERVAL IS 69- THE PERIOD
INDICATING A DECIMAL RATHER THAN AN OCTAL NUMBER- THE COMMAND - le SETS
THE DATA EQUAL TO THE OCTAL NUMBER 31ZZO (LINE S) . FINALLY A 46 CAUSES
THE DATA TO BE TRANSFERRED TO THE BUFFER MEMORY- THE

MAIN PROGRAM GOES
ON TO THE NEXT BUFFER AND WILL NOT RETURN TO THIS BUFFER FOR ANOTHER 6e
INTERRUPTS OR I SEC- WHEN IT DOES RETURN (TO LINE 4) IT ADDS THE OCTAL
NUMBER 10421 TO THE- DATA AND TRANSFERS TEE SUM TO THE BUFFER MEMORY
(LINE 5)- AGAIN THE MAIN PROGRAM RETURNS AFTER I SEC- IT RETURNS
To LINE 6 AND FINDS THE LOOP COMMAND 4Z- INITIALLY TIE COUNTER IS Vo THE
NUMBER OF TIMES THROUGH THE LOOP WILL BE 777 OCTALj AND THE DATA BUFFER
POINTER WILL BE SET BACK TO Ml- THE MAIN PROGRAM WILL REPEAT LINES 4-
6o 777 OCTAL TIMES AND THEN EXPIRES (LINE 7) .

AN, EXAMPLE OF A REAL DATA BUFFER FOLLOWS :

1) DBUF9 : _nWORD V+60-

Z) -WORD IVA31vzz

3) *WORD 46

4) L901 : -WORD MIMI

5) -WORD 46

6) - WORD 4Q+0 o 77 7o LSZ I

7) - WORD 47

4-3 PROGRAMMING THE DIGITAL TO ANALOG CONVERTERS

4-3-1 PROTOCOL

NOW FOR SOME SIMPLE (MINDED) EXAMPLES OF PROGRAMMING TECH-
NIQUES- THE EASIEST DEVICES TO PROGRAM ARE THE D/A CONVERTERS (OUTPUT
DEVICES 1-E) WHICH TRANSLATE A NUMBER INTO A CONTROL VOLTAGE :

1 777**=
12'x2`**

Q'**

**

411 27V
2' V

-12'V

- LOW ORDER HITS Q- S NOT USED

4-3-2- A SIMPLE RAMP

1) 2' r 62' -

I ~ 2'

3) 46

4) L12"1 : I3,1L7Q

S) .46

6) 40, 0, 177 6, LI 7 1

+127V	- - _ _ _ _ _ _ _ _

-10V

T

	

=

	

Q

	

T

	

=

	

I QZ4

	

SEC
1

DELTA T= I SEC

DELTA V= 20/1924 V

DURATION = 1024 SEC

AMPLITUDE= G0V PP

IN LINE 1 WE SET TEE TIMING INTERVAL TO 627 FIELDS OR I SEC .
WE SET THE D/A TO -19V (LINE 2) AND OUTPUT THIS .VALUE TO THE D/A
(LINE 3) . NOW WE CONSTRUGT.A LOOP (LINES 4-6) . THE LABEL L1271
SETS TEE TOP OF THE LOOP.. THE COMMANDS TO BE REPEATED ARE ADD 1927 OCTAL
TO THE DATA AND OUTPUT THE NEW VALUE TO THE D/A . THIS IS REPEATED
1776 TIMES "

A SIMPLE METHOD FOR UNDERSTANDING A LOOP IS A TABLE:

PAGE 43

--

REPEATS OLD DATA NEW DATA

i 17 9 +1017= 109
E I L7 Q7 1927+l 027= ZZQ
3 2717 299+1279= 320
4 3270 3QQ+1ELF= 40'27
5 41727 4017 +10a= 5017
6 50Q" 52727+1027= 6279
7 6_90 6027+i 179= 709
8 7iZ1? 7270+109=1009

VV

_1 Q7V

	

, ____ :____, _________

T = 1?'

	

T = 16 FIELDS
V

	

1

DELTA T= I FIELD .

DELTA V=

	

I

	

Z' 5V

FREQUENCY= APPROX 4 HZ

AMPLITUDE= ZVV PP

4 " 3 .3 A REPEATING SAWTOOTH

1) . ¢-,1

G) L11'1 : IZ'-VV

46

4) L127 E : 13, 11'VeV

S) 46

6) 41T .pV+17 .pL1QE

7) 4V , V .,IQL70 " ~LIZI

+If7V ----------*---------*_________,

IN BOTH. EXAMPLES A PAIR OF NESTED LOOPS IS USED. A LOOP LITI
REPEATS THE BASIC WAVE FORM I2 .U'Q TIMES (LINES 2-9) AND LOOP LIZZ
BUILDS THE WAVEFORM (LINES 4-6)-

THERE IS A SIMPLER WAY OF BUILDING A SAWTOOTH WHICH USES THE
CPU `S WRAP-AROUND FEkTURE :

THIS PRODUCES EXACTLY THE SAME WAVEFORM AS THE FIRST EXAMPLE.
ON THE SIXTEENTH REPETITION WE GET l7Q'gVQ'+ 1000Q= Q . WHICH COMPLETES
THE INSIDE LOOP . THE OUTSIDE LOOP REMAINS THE SAME .

PAGE 45

THIS COULD BE A NEGATIVE GOING SAWTOOTH :

1) Q' . I

L1 L' 1 : 1 Q' . 1 777Q'V

3) 46

4) L1 02 : 14. I ZVa

5) 46

6) 4Q' . Q' . 17 .# LI Q'2

7) 1 4. 777V

8) 46

4e .Q'.l0Ve2 . .LlVI

I) e' . . I

2) 10 .Z

46

4) LI L' 1 : 13 . . I I' Q' Q` 2'

5) 46

6) - 4T . V . G 7 .LIQ'1

7) 4Q' .Q'.1Me " .Lle'1

4" 3 " 4 A REPEATING TRIANGLE

I) 0,I

1 V ., l'

3) 46

4) LIL71 : 13, 17VQ7 7

5) 46

6) 42, Q7 j 171 Ll 171

13,, 7770

$) 46

9) 14 ., 7727 V

1(?) 4 6

ll) LIVZ : 14.#1Q`?ff

12y 46

13) 41Z .07 J17 .pLIL72

14) 4Q'oee1QQQ " oLlOI

flev

	

---------- *------------------- *---------------

ev

	

--------- * ----------* ---------*---------

_10V

	

------------------- -------------------

T = L7	T

	

32 FIELDS
Z

DELTA T= I FIELD

DELTA V= I .S5V

FREQUENCY= APPRX 2 RZ

AMPLITUDE= ZVV PP

PAGE 47

AGAIN THE TIMING INTERVAL IS SET TO I FIELD AND THE DAA
CONVERTER SET TO VV (LINES 1-3)- THE OUTSIDE LOOP (LINES 404)
REPEATS THE WAVEFORM 1W TIMES- - THE FIRST INSIDE LOOP BUILDS THE
POSITIVE GOING SLOPE OF THE" TRIANGLE

	

LINES 4-6) . TEEN THE PEAK OF
ThE TRIANGLE IS FORMED (LINES 7-10

	

THE SECOND INSIDE LOOP BUILDS
THE NEGATIVE SLOPE (LINES - 11-13) .

1.__---------- --6,

4-3-5 MAKING A SINE WAVE

FIRST EXAMINE THIS TABLE :

1 " Q' +I L7 L7 15 . 19 772'2'

G " l2'~' +Zfla 16 " 11772'V ' "

31x L' +41117 17- 12- 7 72' 17

72'? +10 2' 2' 18 . 1 3 7 72' 2' ` "

5. 172'fd 4- EQjZ 7 Is- 14771117

60 37211 +4V10Q 22' " 1 57782' ""

7 " 77211 +I222'R' l " 167722 +42¢'2

17722 222 173722 +E222

90 2.7722 23 " 175722 +1222

I2 . 37722 .' Z4 . 176722 +422

11 . 47722 G5 " 177322 +2:22

1z . 57722 26 " 17752'2' +122

13 . 67722 27 " 177622 +12'2'

14 . 77722 28 . 1 77722

PAGE 49

NEXT THE TABLE IS CODED AS FOLLOWS :

I) 2' + 6

IQ .1?

3) 46

4) 13 . 1 V'?

5) 46

6) 13 . GQ'f

7) 46

8) 13 . 4Q f?

5) 46

I L') 13 . 1 U7 P'

11) 46

I Z) 13 . c(L(I Q'

13) 46

14) 13. 4V'9L7

l5) 46

16) LI 'I : 13 .1 7gZQa

- 17) 46

18) 42' .V .14.L1a1

19) 13 . 4ft217 0

20) 4 6

_1elv ----------------

T = V

	

T = 156 FIELDS
1

DELTA T= 6 FIELDS

DELTA V VARIES

THIS IS TOO MUCH WORK FOR A SINE WAVEo IMPROVEMENTS WILL BE
NjADE " AT THIS POINT DEVELOPMENT STOPS

PAGE 527

EI) 13.,GQ¢a

22) 46

"G3) 1 3o I V20

2. 4) 46

25) 13~ 4VZ

66) 46

27) 13 .p ZQ7Q'

SE) 4 6

ZS) 13 r l 2'Q

3R) 4 6

+IQV ________________,

Q'V ---------*_________

CHAPTER 5 - SUMMARY

5-1 LIMITATIONS OF PRESENT SOFTWARE

AS OBVIOUS THE PROGRAM FAILS TO SATISFY THE ORIGINAL DESIGN
CRITERIA* THE PROGRAM IS NOT INTERACTIVE- IT IS NOT CONCERNED WITH
GRAPHIC DESIGN OR COMPOSITION . I T CANNOT - REPROGRAM ITSELF IN RESPONSE
TO EXTERNAL STIMULAE- HOWEVER I'F'S NOT A TOTAL LOSSi THE BASIC
'GROUNDWORK IS COMPLETE- THE ELEMENTS OF THE LANGUAGE OUTLINED IN
APPENDICES A AND B ARE-STILL BEYOND THE UNINITIATED- BUTj FROM THESE
ELEMENTS A HIGHER LEVEL LANGUAGE WILL BE CREATED- THIS NEW LANGUAGE WILL
FACILITATE THE DIALOGUE BETWEEN THE ARTIST AND THE PROGRAM ALLOWING HIM
70 CREATE THE IMAGES AND SEQUENCES OF IMAGES IN A LANGUAGE HE UNDER-
STANDS ; A GRAPHIC DESIGN LANGUAGE.

AGAIN o THIS MODE OF OPERATION IS ONLY TEMPORARY; REAL-TIME
INTERACTION WILL BE ADDED BY EXPANDING THE INTERPRETER ROUTINE To
INCLUDE THE ABILITY TO LISTEN AND TALK BACK*

It THE PROGRAM LISTENS AND TALKS THEN IT CAN LEARN- COMBINING
THE RANDOM NUMBER GENERATOR WITH A SIMPLE ALGORITHM FOR ANALYZING
IMAGES WE CAN ENDOW THE PROGRAM WITH A PERSONALITY (OR SEVERAL PERSON-
ALITIES)-

BUT WHAT IS THE LANGUAGE SPOKEN BY THE ARTIST AND THE PROGRAM?
THAT'S A QUESTION FOR CONTINUING RESEARCH-

THE PRESENT PROGRAM RUNS IN BATCH MODE- TEAT IN THE DATA MUST
BE PREPARED BEFORE THE PROGRAM IS'RUNo THEN THE MAIN PROGRAM AND THE
DATA ARE LINKEDo LOADED AND FINALLY PROCESSED- IF THE RESULTS ARE NOT
QUITE AS,EXPECTED (THE NORM RATHER 1EAN THE EXCEPTION) THEN ThE WHOLE
PROCESS MUST BE REPEATED;AARDLY INSTANT GRATIFICATION-

5-2 PROPOSED SOFTWARE DEVELOPMENT

PROPOSED PROGRAM DEVELOPMENT INCLUDES :

40

5*

I

	

ADDING A TERMINAL INPUT AND OUTPUT ROUTINE TO THE
INTERPRETER .

Z " ADDING MACRO COMMANDS INVOKING COMMAND WORD SEQUENCES-
34 ADDING A DATA BUFFER TO OUTPUT DEVICE CROSS-REFERENCE

TABLE.
ADDING EDITING COMMANDS TO MODIFY DATA BUFFER CONTENTS IN
REAL-TIME .
ADDING CONDITIONAL BRANCO COMMANDS .
DESIGNING A - HIGHER LEVEL LANGUAGE BASED ON THE ELEMENTS AND
ATTRIBUTES OF - GRAPHIC DESIGN .
EXPANDING THE MANUAL OF PROGRAMMING TECHNIQUES-
CREATING A PERSONALITY FOR THE PROGRAM ; ANTHROPOMORPRIZATION
OF THE PROGRAM-

AND FINALLY I WILL ATTEMPT TO KEEP UP WITH THE BREAK-NECK PACE
OF HARDWARE DEVELOPMENT-

APPENDIX A - COMMAND WORDS

Q+ N

	

;SET THE TIMING INTERVAL

DL V C71RSS DIVIDE M . <R/S>
ASK 014R55 ARITHMETIC SHIFT
ASHC 073RSS SHIFT COMBINED

FADD 075FOR FLOATING ADD
FS UB V75VIR FLOATING -SUBTRACT
FMUL V7502R FLOATING MULTIPLY
FDIV 075M FLOATING DIVIDE

BR TfV4V7 BRANCH UNCONDITIONAL
E V0100V BRANCH IF QZ = L7

BEQ 0114VO BRANCE IF = Vi Z= I
BPL IVVVVZ BRANCH IF PLUSj N= 0
BMI lVV4VV BRANCH IF MINUSj N= I
BVC IVZVVZ BRANCH IF OVERFLOW CLEARj V= 0
BVS IVZ4VO BRANCH IF OVERFLOW SETo V= I
BCC 1030VV BRANCH IF CARRY CLEARj C= 0
BGS 14'34V2' BRANCH IF CARRY SET, C= I

BGE VVZVVZ BRANCH IF Vj N V= 2'
BLT V0240V BRANCH IF Vi N V= I
BGT 703007 BRANCH IF vo Z (N V)=v
BLE 073470 BRANCH IF on Z (N V)=l

BR I 101000 BRANCH IF HIGHERj C Z=9
BLOS 101400 BRANCH IF LOWER OR SAMEo C Z=l
BHIS MeOO BRANCH IF HIGRER :OR SAMEj C=Z
BL C, 1V3400 BRANCH IF LOWERA C=l

imp VVV I DD JUMP PC <D>
isn 704RDD JUMP SUBROUTINE
RTS VVViZR RETURN FROM SUBROUTINE
MARK OV64NN MARK
SOB E77RNN SUBTRACT I AND BRANCH IF 27

EMT 104*** EMULATOR TRAP
TRAP 104*** TRAP
EPT ZVVZZ3 BREAKPOINT TRAP
IOT VM04 INPUT/OUTPUT TRAP
ATI ZVOM RETURN FROM INTERRUPT
RTT VVZZZ6 RETURN FROM INTERRUPTo INHIBIT TRAP

HALT ZVVZVZ HALT
WAIT VVVV7l WAIT FOR INTERRUPT
RESET 0VV0V5 RESET BUS
NOP 00024V NO OPERATION

CLC ZOOZ41 CLEAR C C Q7

.CLV 00OZ4Z CLEAR V V L7
CLZ 00OZ44 CLEAR Z z e
GLN 000250 CLEAR N N Q7

CCC QQQ257 CLEAR ALL

SEC OV0261 SET C C I
SEV VZ0262 SET V V I
SEZ ZVVZ64 SET Z z I
SEEN VCV270 SET N N I
ScC OOZZ77 SET ALL

NEA REPORT

THE INTERVAL IS THE NUMBER OF FIELDS THE MAIN PROGRAM WAITS
BEFORE RETRUNING TO THE DATA BUFFER FOR TEE NEXT COMMAND WORD-

;ADD TO THE TIMING INTERNALlo N

INTERNAL= INTERvAL+N

Z,N

	

; SUBTRACT FROM THE TIMING INTERVAL

INTERNAL= INTERVAL-N

3

	

; COMPLEMENT THE TIMING INTERVAL

INTERVAL= INTERVAL 177777

ON

	

; SHIFT THE TIMING INTERVAL RIGHT

INTERVAL= INTERVAL/2

AN INTERVAL OF I SEC BECOMES 2 SEC .

5

	

;SHIFT THE TIMING INTERVAL LEFT

INTERVAL= INTERVAL*Z

AN INTERVAL OF I SEC BECOMES 2 SEC .

I&N

	

;SET THE DATA WORD

DATA= No WHERE - KNiZeMe OCTAL

11

	

;INCREMENT THE DATA WORD

DATA= DATAQ, 177777+1= 2'

lz

	

;DECREMENT THE DATA WORD

DATA= DATA-lo V-1-7177777

QoN

	

;ADD TO THE DATA WORD

DATA= DATA+N

I&N

	

;SUBTRACT FROM THE DATA WORD .

DATA= DATA-N

15

	

;COMPLEMENT THE DATA WORD

DATA= DATA 177777

16

	

;SHIFT THE DATA WORD RIGHT

DATA= DATA/Z

17

	

;SHIFT THE DATA WORD LEFT

DATA= 2*DATA

ZL7

	

;ROTATE THE DATA WORD RIGHT

INTERVAL= No WHERE f<NWZ9ffqV OCTAL

BIT N BECOMES BIT N-1

BIT 2 BECOMES BIT 15

2I

	

;ROTATE THE DATA WORD LEFT

22 ., N

243.p N

331 NJ ,Ne

34.-W1 ,N2

15
BIT N BECOMES BIT N+1

BIT 15 BECOMES BIT 2

;BIT CLEAR DATA WORD WITH N

DATA= DATA (N)

DATA= DATA N

;BIT SET DATA WORD WITH N

DATA

	

Q7 Ill 321 211 212 111
N

	

e I22 221 121 122 212

DATA

	

2 112 Ill III 112 Ill

	

265767

24., N

	

; XOR DATA WORD WITH N

DATA= DATA N

DATA

	

2 112 l21 211 212 Ill
N

	

2 I22 22I 12l l22 212'

DATA

	

2 212 122 Il2 112' I21

	

224665

32` ., N I p NG

	

;GET DATA

WITH NI= I TO S AND N2= I TO 16 REGISTER 2 BECOMES THE
VALUE CONTAINED IN TABLE NI-ENTRY N2 .

WITH N1= 9 TO 12 REGISTER Z BECOMES THE VALUE SENSED BY
ANALOG TO DIGITAL CONVERTER [VI

WITH N1= 13 REGISTER E BECOMES THE VALUE SENSED BY THE REAL-
TIME INTERFACE .

WITH NI=14 REGISTER 2 IS SET BY THE RANDOM NUMBER GENERATER "

IF N1= 9 TO 14 THEN NZ IS NOT USED AND THE COMMAND TAKES THE
FORM- 37jN1

31iN1 .PN2

COMBINES COMMANDS 32 AND 31 "

32,vN1 .N2

	

;GET NEW DATA AND SUBTRACT FROM OLD DATA

COMBINES COMMANDS 32 AND 14 .

;GET NEW DATA AND BIT CLEAR WITH OLD DATA

COMBINES COMMANDS 32 AND 22 "

;GET NEW DATA AND BIT SET WITH OLD DATA

;GET NEW DATA AND ADD TO OLD DATA

DATA 2 112 x'21 ¢11 Z'I2 III 26532-7
N - 2 Joe 221 lei lee vie e41542-

DATA 2 v12 l22' z1¢ 212 lei 2 G422-5

COMBINES COMMANDS 39 AND Z3 .

35.pNl .pNrZ

	

;GET NEW DATA AND XOR WITh OLD DATA

COMBINES COMMANDS 30 AND Z4-

-4VjNljNZoLABEL ; LOOP COMMAND

THE PROGRAM IS SET TO REPEAT A SEQUENCE OF COMMANDS WHERE :

I

	

- Vj USED AS A COUNTER BY PROGRAM
NE

	

- 0 TO 177777P NUMBER OF REPETITIONS
LABEL

	

- POINTER TO TOP OF LOOP

EXAMPLE OF A SINGLE LOOP :

1)

	

LABELI : COMMAND

COMMAND

3)

	

42'+Z+ IMALABELl

EXAMPLE OF A NESTED LOOPS :

1)

	

LABLLI : COMMAND

2)

	

LABELZ : COMMAND

3)

	

COMMAND

4)

5)

	

400 IZZ-jLABELI

EXAMPLE OF MULTIPLE LOOPS :

1)

	

LABELI : COMMAND

COMMAND

40o Vo I VV

	

i LABEL I

4)

	

LABELZ : COMMAND

5)

	

COMMAND

6)

	

400100 oLABELc

7)

	

IZV --- ,LABELI

46

	

;OUTPUT COMMAND

47

	

;THE EXIT COMMAND! THE ENDj FINIS

- THE DATA WORD CONTAINED IN THE PARAMETER LIST IS TRANSFERRED
TO THE BUFFER MEMORY AND THE MAIN PROGRAM GOES ON TO THE NEXT DATA
BUFFER*

NEA REPORT

APPENDIX A - LSI-11 OPERATION CODES

B
SS
DD
R

- 0 FOR WORDo I FOR BYTE
- SOURCE FIELD 6 BITS
- DESTINATION FIELD 6 BITS
GENERAL REGISTERS BITSo V- 7

XOR

<S>

	

- CONTENTS OF SOURCE
<D>

	

- CONTENTS OF DESTINATION
<R>

	

-CONTENTS OF REGISTER
<_

	

- BECOMES

N
Z
V
C

- SIGN
- ZERO
- OVERFLOW
- CARRY

CONDITION CODE ,
CONDITION CODE I BIT

CONDITIN CODE I BIT
CONDITION - CODE I BIT

MNEMONIC OPCODE INSTRUCTION NOTES

CLR (B B05VDD CLEAR <D> L7

COM(b) B051DD COMPLEMENT <D> <D>

INC(B) B052DD INCREMENT <D> <D>+l

DEC (B) BV53DD DECREMENT <D> <D>-l

NEG(B) B054DD NEGATE <D> -<D>

TST(B) BV57DD TESTo SETS STATUS BITS

ROR(B) BV60DD ROTATE RIGHT <C,D>
ROM) B061DD ROTATE LEFT ' <C ;D>
ASR(B) Se6ZDD SHIFT RIGHT <D>
ASL(B) BV63DD SHIFT LEFT Z*<D>
SWAB OVe3DD SWAP BYTES

ADC (B) BZ55DD ADD CARRY <D> <D>+<C>
SBC (B) B056DD SUBTRACT CARRY <D> <D>-<C>
SXT V067DD SIGN EXTEND 7 OR -1

MFPS IZ67DD MOVE BYTE FROM PS <D> PS
MTPS 106455 MOVE BYTE TO PS PS <D> ,

MOV(B) BISSDD MOVE <D> <S>
CMP(B) BZSSDD COMPARE <S-D>jSETS STATUS BITS
ADD 06SSDD ADD <D> <S+D>
SUB 165SDD SUBTRACT <D> <D-S>

BIT(B) B3SSDD BIT TEST <S D>,SETS STATUS BITS
BIG(B) B4SSDD SIT SET <D> <(S) D>
BIS(B) B5SSDD BIT SET <D> <S D>
XOR 774RDD XOR <D> <R D>

MUL V7VRSS MULTIPLY <R> <R*S>

- AND
- INCLUSIVE OR
- EXCLUSIVE ORo
- NOT

