
1 ABSTRACT

This paper describes how evolutionary techniques of variation and
selection can be used to create complex simulated structures, tex-
tures, and motions for use in computer graphics and animation .
Interactive selection, based on visual perception of procedurally
generated results, allows the user to direct simulated evolutions in
preferred directions. Several examples using these methods have
been implemented and are described. 3D plant structures are grown
using fixed sets of genetic parameters . Images, solid textures, and
animations are created using mutating symbolic lisp expressions .
Genotypes consisting of symbolic expressions are presented as an
attempt to surpass the limitations of fixed-length genotypes with
predefined expression rules. It is proposed that artificial evolution
has potential as a powerful tool for achieving flexible complexity
with a minimum of user input and knowledge of details .

2 INTRODUCTION

Procedural models are increasingly employed in computer graphics
to create scenes and animations having high degrees of complexity .
A price paid for this complexity is that the user often loses the
ability to maintain sufficient control over the results . Procedural
models can also have limitations because the details of the pro-
cedure must be conceived, understood, and designed by a human.
The techniques presented here contribute towards solutions to these
problems by enabling "evolution" of procedural models using inter-
active "perceptual selection." Although they do not give complete
control over every detail of the results, they do permit the creation
of a large variety of complex entities which are still user directed,
and the user is not required to understand the underlying creation
process involved .

Many years ago Charles Darwin proposed the theory that all
species came about via the process of evolution [2] . Evolution is
now considered not only powerful enough to bring about biological
entities as complex as humans and consciousness, but also useful
in simulation to create algorithms and structures of higher levels
of complexity than could easily be built by design . Genetic algo-
rithms have shown to be a useful method ofsearching large spaces

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission .

©1991 ACM-0-89791-436-8/91/007/0319

Computer Graphics, Volume 253, Number 4, July 1991

Artificial Evolution for Computer Graphics

Thinking Machines Corporation
245 First Street, Cambridge, MA 02142

$00 .75

Karl Sims

using simulated systems of vanation and selection [5, 6, 7, 23].
In The Blind Watchmaker, Dawkins has demonstrated the power
of Darwinism with a simulated evolution of 2D branching struc-
tures made from a set of genetic parameters . The user selects the
"biomorphs" that survive and reproduce to create each new gen-
eration [3, 4] . Latham and Todd have applied these concepts to
help generate computer sculptures made with constructive solid
geometry techniques [9, 281.

Variations on these techniques are used here with the emphasis
on the potential of creating forms, textures, and motions that are
useful in the production of computer graphics and animation, and
also on the potential of using representations that are not bounded
by a fixed space of possible results .

2 .1 Evolution

Both biological and simulated evolutions involve the basic con-
cepts of genotype and phenotype, and the processes of expression,
selection, and reproduction with variation.

The genotype is the genetic information that codes for the cre-
ation of an individual . In biological systems, genotypes are nor-
mally composed of DNA. In simulated evolutions there are many
possible representations of genotypes, such as strings of binary dig-
its, sets of procedural parameters, or symbolic expressions . The
phenotype is the individual itself, or the form that results from the
developmental rules and the genotype . Expression is the process
by which the phenotype is generated from the genotype . For ex-
ample, expression can be a biological developmental process that
reads and executes the information from DNA strands, or a set of
procedural rules that utilize a set of genetic parameters to create a
simulated structure . Usually, there is a significant amplification of
information between the genotype and phenotype.

Selection is the process by which the fitness of phenotypes is
determined . The likelihood of survival and the number of new
offspring an individual generates is proportional to its fitness mea-
sure. Fitness is simply the ability of an organism to survive and
reproduce. In simulation, it can be calculated by an explicitly de-
fined fitness evaluation function, or it can be provided by a human
observer as it is in this work .

Reproduction is the process by which new genotypes are gen-
erated from an existing genotype or genotypes . For evolution to
progress theremustbe variation ormutations in new genotypes with
some frequency. Mutations are usually probabilistic as opposed to
deterministic. Note that selection is, in general, non-random and
is performed on phenotypes ; variation is usually random and is
performed on the corresponding genotypes [See figure I] .

319

phenotype can be saved for further manipulation . Solid polygo-
nal branches can be generated with connected cylinders and cone
shapes, and leaves can be generated by connecting sets of periph-
eral nodes with polygonal surfaces . Shading parameters, color,
and bump textures can be assigned to make bark and leaf surfaces .
These additional properties could also be selected and adjusted us-
ing artificial evolution, but due to the longer computation times
involved to test samples, these parameters were adjusted by hand .
In some cases, leaf shapes were evolved independently and then ex-
plicitly added to the tip segments ofother evolved plant structures .
A forest of plant structures created using these methods is shown in
figure 3.

3.2

	

Mutating Parameter Sets

For artificial evolution of parameter sets to occur, they must be
reproduced with some probability of mutation. There are many
possible methods for mutating parameter sets. The technique used
here involves normalizing each parameter for a genetic value be-
tween .0 and 1 .0, and then copying each genetic value or gene, gi,
from the parent to the child with a certain probability of mutation,
m. A mutation is achieved by adding a random amount, fd, to the
gene . So, a new genotype, G', is created using each gene, gi, of a
parent genotype, G, as follows:

For each g,
If rand(.0, 1 .0) < in

then y; = y, + rand(-d, (1)
clamp or wrap g, to legal bounds .

else y, = y,

The normalized values are scaled, offset, and optionally squared to
give the parameter values actually used . This allows the mutation
distances, td, to be proportional to the scale of the range of valid
parameter values . Squaring or raising some values to even higher
powers can be useful because it causes more sensitivity in the lower
region of the range of parameter values. The mutation rate and
amount are easily adjusted, but are commonly useful at much higher
values than in natural systems (m = 0.2, d = 0.4) . The random
value between -d and d might preferablybe found using aGaussian
distribution instead of this simple linear distribution, giving smaller
mutations more likelihood than larger ones.

3.3

	

Mating Parameter Sets

When two parameter sets are found that both create structures with
different successful features, it is sometimes desirable to combine
these features into a single structure. This can be accomplished by
mating them. Reproducing two parameter sets with sexual combi-
nation can be performed in many ways. Four possible methods are
listed below with some oftheir resulting effects :

1 . Crossovers can be performed by sequentially copying genes
from one parent, but with some frequency the source genotype is
switched to the other parent. This causes adjacent genes to be more
likely to stick together than genes at opposite ends of the sequence .
Each pair of genes has a linkage probability depending on their
distance from each other.

2. Each gene can be independently copied from one parent or
the other withequalprobability. If the parent genes each correspond
to a point in N-dimensional genetic space, then the genes of the
possible children using this method correspond to the 2N corners

Computer Graphics, Volume 25, Number 4, July 1991

Figure 2: Mating plant structures .

Figure 3: Forest of"evolved" plants .

of the N-dimensional rectangular solid connecting the two parent
points . This method is the most commonly used in this work and is
demonstrated in figure 2. Two parent plant structures are shown in
the upper left boxes, and the remaining forms are their children.

3. Each gene can receive a random percentage, p, of one par-
ent's genes, and a 1 - p percentage of the other parent's genes.
If the percentage is the same for each gene, linear interpolation
between the parent genotypes results, and the children will fall
randomly on the line between the N-dimensional points of the par-
ents . If evenly spaced samples along this line were generated, a
genetic dissolve could be made that wouldcause a smooth transition
between the parent phenotypes if the changing parameters had con-
tinuous effects on the phenotypes . This is an example of utilizing
the underlying genetic representation for specific manipulation of
the results . Interpolation could also be performed with three parents
to create children that fall on a triangular region of a plane in the
N-dimensional genetic space.

4. Finally, each new gene can receive a random value between
the two parent values of that gene . This is like the interpolation
scheme above, except each gene is independently interpolated be-

32 1

SIGGRAPH '91 Las Vegas, 28 July-2 August 1 991

II161Alt - 11-

tween the parent genes. This method results in possible children
anywhere within the N-dimensional rectangular solid connecting
the parent points .

Mutating and mating parameter sets allow a user to explore and
combine samples in a given parameter space. In the next section,
methods are presented that allow mutations to add new parameters
and extend the space, instead of simply adjusting existing parameter
values .

4

	

SYMBOLIC EXPRESSIONS AS GENOTYPES

Alimitation ofgenotypesconsisting ofa fixed number ofparameters
and fixed expression rules as described above is that there are solid
boundaries on the set ofpossible phenotypes . There is no possibility
for the evolution of a new developmental rule or a new parameter.
There is no way for the genetic space to be extended beyond its
original definition - the N-dimensional genetic space will remain
only N-dimensional.

To surpass this limitation, it is desirable to include procedural
information in the genotype instead of just parameter data, and
the procedural and data elements of the genotype should not be
restricted to a specific structure or size.

Symbolic lisp expressions are used as genotypes in an attempt
to meet these needs. Aset of lisp functions and a set of argument
generators are used to create arbitrary expressions which can be
mutated, evolved, and evaluated to generate phenotypes . Some
mutations can create larger expressions with new parameters and
extend the space of possible phenotypes, while others just adjust
existing parts of the expression . Details of this process are best
described by the examples below.

4.1

	

Evolving Images

The second example of artificial evolution involves the generation
of textures by mutating symbolic expressions . Equations that cal-
culate a color for each pixel coordinate (x, y) are evolved using a
function set containing some standard common lisp functions [26],
vector transformations, procedural noise generators, and image pro-
cessing operations :

+, -, *, /, mod, round, min, max, abs, expt, log, and,
or, xor, sin, cos, atan, if, dissolve, hsv-to-rgb, vector,
transform-vector, bw-noise, color-noise, warped-bw-
noise, warped-color-noise, blur, band-pass, grad-mag,
grad-dir, bump, ifs, warped-ifs, warp-abs, warp-rel,
warp-by-grad.

Each function takes a specified number of arguments and calculates
and returns an image of scalar (b/w) or vector (color) values .

Noise generators can create solid 2D scalar and vector noise
at various frequencies with random seeds passed as arguments so
specific patterns can be preserved between generations [figure 4f,
and 4i]. The warped versions of functions take (U, V) coordinates
as arguments instead of using global (X, Y) pixel coordinates,
allowing the result to be distorted by an arbitrary inverse mapping
function [figure 4i] . Boolean operations (and, or, and xor) operate
on each bit of floating-point numbers and can cause fractal-like
grid patterns [figure 4e]. Versions of sin and cos which normalize
their results between .0 and 1 .0 instead of,-1 .0 and 1 .0 can be
useful . Some functions such as blurs, convolutions, and those that

322

Figure 4: Simple expression examples .

(reading left to right, top to bottom)
a. X
b. Y
c. (abs X)
d. (modX (abs Y))
e. (and XY)
f. (bw-noise .2 2)
g. (color-noise .] 2)
h. (grad-direction (bw-noise .15 2) .0 .0)
i . (warped-color-noise (* X .2) Y .1 2)

use gradients also use neighboring pixel values to calculate their
result [figure 4h]. Band-pass convolutions can be performed using
a difference of Gaussians filter which can enhance edges. Iterative
function systems (ifs) can generate fractal patterns and shapes .

Details of the specific implementations of these functions are
not given here because they arenot as important as the methods used
for combining them into longer expressions . Many other functions
would be interesting to include in this function set, but these have
provided for a fairly wide variety of resulting images .

Simple random expressions are generated by choosing a func-
tion at random from thefunction set above, and then generating as
many random arguments as that function requires . Arguments to
these functions can be either scalars or vectors, and either constant
values or images of values. Random arguments can be generated
from the following forms:

-Arandom scalar value such as .4
-Arandom 3-element vector such as #(.42 .23 .69)
- Avariable such as theX or Y pixel coordinates.
- Another lisp expression which returns a b/w or
color image.

Most of the functions have been adapted to either coerce the
arguments into the required types, or perform differently according
to theargument types given to them . Arguments to certainfunctions
can optionally be restricted to some subset of the available types.
For the most part these functions receive and return images, and
can be considered as image processing operations. Expressions are

simply evaluated to produce images . Figure 4 shows examples of
some simple expressions and their resulting images.

Artificial evolution of these expressions is performed by first
generating and displaying a population of simple random expres-
sions in a grid for interactive selection. The expressions of images
selected by the user are reproduced with mutations for each new
generation such that more and more complex expressions and more
perceptually successful images can evolve . Some images evolved
with this process are shown in figures 9 to 13.

4.2

	

Mutating Symbolic Expressions

Symbolic expressions must be reproduced with mutations for evo-
lution of them to occur. There are several properties of symbolic
expression mutation that are desirable. Expressions should often
be only slightly modified, but sometimes significantly adjusted in
structure and size . Large random changes in genotype usually
result in large jumps in phenotype which are less likely to be im-
provements, but are necessary forextending the expression to more
complex forms.
A recursive mutation scheme is used to mutate expressions .

Lisp expressions are traversed as tree structures and each node is in
turn subject to possible mutations . Each type of mutation occurs at
different frequencies depending on the type of node :

1 . Any node can mutate into a new random expression . This
allows for large changes, and usually results in a fairly significant
alteration of the phenotype.

2. If the node is a scalar value, it can be adjusted by the addition
of some random amount.

3. If the node is a vector, it can be adjusted by adding random
amounts to each element.

4. If the node isa function, it can mutate intoa different function .
For example (abs X) might become (cos X) . If this mutation occurs,
the arguments of the function are also adjusted if necessary to the
correct number and types .

5. An expression can become the argument to a new random
function . Other arguments are generated at random if necessary.
For example X might become (* X .3).

6. An argument to a function can jump out and become the new
value for that node . For example (* X .3) might become X . This is
the inverse of the previous type of mutation.

7. Finally, a node can become a copy of another node from the
parent expression . For example (+ (abs X) (* Y .6)) might become
(+ (abs(* Y .6)) (* Y .6)). This causes effects similar tothose caused
by mating an expression with itself. It allows for sub-expressions
to duplicate themselves within the overall expression.

Other types of mutations could certainly be implemented, but
these are sufficient for a reasonable balance of slight modifications
and potential for changes in complexity.

It is preferable to adjust the mutation frequencies such that a
decrease in complexity is slightly more probable than an increase.
This prevents the expressions from drifting towards large and slow
forms without necessarily improving the results . They should still
easily evolve towards larger sizes, but a larger size should be due
to selection of improvements instead ofrandom mutations with no
effect .

The relative frequencies for each type of mutation above can be
adjusted and experimented with. The overall mutation frequency is
scaled inversely in proportion to the length ofthe parent expression .
This decreases the probability of mutation at each node when the

®Computer Graphics, Volume 25, Number 4, July 1991

parent expression is large so that some stability of the phenotypes
is maintained.

The evaluation of expressions and display of the resulting im-
ages can require significant calculation times as expressions in-
crease in complexity. To keep image evolution at interactive speeds,
estimates of compute speeds are calculated for each expression by
summing pre-computed runtime averages for each function. Slow
expressions are eliminated before ever being displayed to the user.
New offspring with random mutations are generated andtested until
fast enough expressions result . In this way automatic selection is
combined with interactive selection. If necessary, this technique
could also be performed to keep memory usage to a minimum.

4.3

	

Mating Symbolic Expressions

Symbolic expressions can be reproduced with sexual combinations
to allow sub-expressions from separately evolved individuals to be
mixed into a single individual. Two methods for mating symbolic
expressions are described.

The first method requires the two parents to be somewhat sim-
ilar in structure . The nodes in the expression trees of both parents
are simultaneously traversed and copied to make the new expres-
sion . When a difference is encountered between the parents, one
of the two versions is copied with equal probability. For example,
the following two parents can be mated to generate four different
expressions, two ofwhich are equal to the parents, and two ofwhich
have some portions from each parent :

parent l : (* (abs X) (mod X Y))
parent2: (* (/ YX) (* X-.7))

child1 : (* (abs X) (mod XY))
child2 : (* (abs X) (* X -.7))
child3 : (* (/ YX) (mod X Y))
child4 : (* (/ YX) (* X -.7))

This method is often useful for combining similar expressions that
each have some desired property. It usually generates offspring
without very large variations from the parents . Two expressions
with different root nodes will not forth any new combinations . This
might be compared to the inability of two different species to mate
and create viable offspring .

The second method for mating expressionscombines theparents
in a less constrained way. Anode in the expression tree of one parent
is chosen at random and replaced by a node chosen at random from
the other parent . This crossing over technique allows any part
of the structure of one parent to be inserted into any part of the
other parent and permits parts of even dissimilar expressions to be
combined. With this method, the parent expressions above can
generate 61 different child expressions - many more than the 4 of
the first method.

4.4

	

Evolving Volume Textures

A third variable, Z, is added to the list of available arguments to
enable functions to be evolved that calculate colors for each point in
(X, Y, Z) space. Thefunction set shown in section 4.1 is adjusted
for better results : 2Dfunctions that require neighboring pixel values
such as convolutions and warps are removed, and 3D solid noise
generating functions are added.

These expressions are more difficult to visualize because they
encompass all of 3D space. They are evaluated on the surfaces

323

SIGGRAPH '91 Las Vegas, 28 July-2 August 1991

Figure 5: Parent with 19 random mutations.

of spheres and planes for fast previewing and selection as shown
in figure 5. Evolved volume expressions can then be incorporated
into procedural shading functions to texture arbitrary objects . This
process allows complex volume textures such as those described
in [181 and [191 to be evolved without requiring specific equations
to be understood and carefully adjusted by hand . Figure 6 was
generated by evolving three volume texture expressions and then
evaluating them at the surfaces positions of three objects during the
rendering process .

4.5

	

Evolving Animations

324

Figure 6: Marble and wooden tori .

Several extensions to the image evolution system described above
can be used to evolve moving images . Five methods for incorpo-
rating a temporal dimension in symbolic expressions are proposed :

1 . Another input variable, Time, can be added to the list of
available arguments. Expressions can be evolved that are functions
of X, Y, and Time such that different images are produced as the
value ofTime issmoothly animated . Morecomputation is required
to generate, display and select samples because a sequence of im-

ages must be calculated . An alternate method of display involves
displaying various slices of the (X, Y, Time) space (although op-
erations requiring neighboring pixel values might not receive the
correct information if the values of Time vary between them).

2. Genetic cross dissolves can be performed between two ex-
pressions of similar structure . Interpolation between two expres-
sions is performed by matching the expressions where they are iden-
tical and interpolating between the results where they are different.
Results of differing expression branches are first calculated and
dissolved, and then used by the remaining parts of the expression .
If the two expressions have different root nodes, a conventional
image dissolve will result . If only parts within their structures are
different, interesting motions can occur. This technique utilizes the
existing genetic representation of evolved still images to generate
in-betweens for a smooth transition from one to another. It is an
example of the usefulness of the alternate level of control given
by the underlying genetic information. A series of frames from a
genetic cross dissolve are shown in figure 7.

3. An input imagecan be added to the list ofavailable arguments
to make functions of X, Y, and Image. The input image can then
be animated and processed by evaluating the expression multiple
times for values of Image corresponding to frames of another
source of animation such as hand drawn or traditional 3D computer
graphics . This is effectively a technique for evolving complex
image processing and warping functions that compute new images
from given input images . Figure 8 was created in this way with an
input image of a human face.

4.

	

The images that use the pixel coordinates (X, Y) to de-
termine the colors at each pixel can be animated by altering the
mappings of X and Y before the expression is evaluated . Simple
zooming and panning can be performed as well as 3D perspective
transformations and arbitrary patterns of distortion .

5. Evolved expressions can be adjusted and experimented with
by hand. If parameters in expressions are smoothly interpolated
to new values, the corresponding image will change in potentially
interesting ways . For example, solid noise can be made to change
frequency, colors can be dissolved into new shades, and angles
can be rotated. This is another example of utilizing the underlying
genetic information to manipulate images . A small change in the
expression can result in a powerful alteration ofthe resulting image.

Finally, the techniques above can be used together in various
combinations to make an even widerrange ofpossibilities for evolv-
ing animations .

R_-,

" 1t1111I~`)

Figure 7: Frames from a "genetic cross dissolve ."

5 RESULTS

Figure 8 : Fire of Faces.

Evolution of 3D plant structures, images, solid textures, and an-
imations have been implemented on the Connection Machine , cr)

system CM-2, a data parallel supercomputer 110, 271. The parallel
implementation details will not be discussed in this paper, but each
application is reasonably suited for highly parallel representation
and computation . Lisp expression mutations and combinations are
performed on a front-end computer and the Connection Machine
system is used to evaluate the expression for all pixels in parallel
using Starlisp and display the resulting image .

3D Plant structures have been evolved and used in the animated
short Panspernua 1241 . A frame from this sequence is shown in
figure 3 which contains a variety of species created using these
techniques . An interactive system for quickly growing, displaying,
and selecting sample structures allows a wide range of plant shapes
to be efficiently created by artificial evolution . Populations of
samplescan be displayed for selection in wire frame in a grid format
as shown in figure 2, or displayed as separate higher-resolution
images which can be interactively flipped through by scrolling with
a mouse. Typically between 5 and 20 generations are necessary for
acceptable structures to emerge .

Images, volume textures, and various animations have been
created using mutating symbolic expressions . These sometimes
require more generations to evolve complex expressions that give
interesting images - often at least 10 to 40 generations . Again, an
interactive tool for quickly displaying grids of sample images to be
selected amongst makes the evolution process reasonably efficient.
[See figure 5.1 The number of possible symbolic expressions of
acceptable length is extremely large, and a wide variety of textures
and patterns can occur. Completely unexpected kinds of images
have emerged. Figure 9 was created from the following evolved
expression :

(round (log (+ 3' (color-grad (round (+ (ahs (round
(lug (+ y (color-grad (round (+ y (log (invert .y) 15 .5))
x) 3.11 .86 #(0.95 0.7 0.59) 1.35)) 0.19) x)) (log (invert
y) 15.5)) x) 3.11.9 #(0.95 0.7 0.35) 1.35)) 0.19) x)

4tComputer Graphics, Volume 25, Number 4, July 1991

Figure 9.

Figure 10.

Figure 11 .

325

Figure 13 was created from this expression :

Notethat expressions only five or six lines long can generate images
of fair complexity. Equations such as these can be evolved from
scratch in timescales ofonly several minutes - probably much faster
than they could be designed.

Figures 10, 11, and 12 were also created from expressions of
similar lengths. Fortunately, analysis of expressions is not required
when using these methods to create them . Users usually stop at-
tempting to understand why each expression generates each image.
However, for those interested, expressions for other figures are
listed in the appendix .

Two different approaches of user selection behavior are possi-
ble. The user can have a goal in mind and select samples that are
closer to that goal until it is hopefully reached. Alternatively, the
user can follow the more interesting samples as they occur without
attempting to reach any specific goal .

The results of these various types of evolved expressions can
be saved in the very concise form of the final genotypic expression
itself. This facilitateskeeping large libraries ofevolved forms which
can then be used to contribute to further evolutions by mating them
with other forms or further evolving them in new directions .

6

	

FUTURE WORK

Artificial evolution has many other possible applications for com-
puter graphics and animation. Procedures that use various other
forms ofsolid noise could be explored, such as those that create ob-
jects, create density functions, or warp objects [20, 15] . Procedures
could be evolved that generate motion from a set ofrules (possibly
cellular automata, or particle systems), or that control distributions
and characteristics of2D objects such as lines, solid shapes, or brush
strokes. Algorithms that use procedural construction rules to create
3D objects from polygons, or functions that generate, manipulate,
and combine geometric primitives could also be explored .

These techniques might also make valuable tools in domains
beyond computer simulations. New possibilities for shapes and
textures could be explored for use in product design or the fashion
industry .

Several variations on the methods for artificial evolution de-
scribed above might make interesting experiments . Mutation fre-
quencies could be included in the genotype itself so that they also
can be mutated. This might allow for the evolution of evolvability
[4] . Frequencies from the most successful evolutions could be kept
as the defaults .

It might be interesting to attempt to automatically evolve a sym-
bolic expression that could generate a simple specific goal image.
An image differencing function could be used to calculate afitness
based on how close a test image was to the goal, and an expression
could be searched for by automatic selection . Then, interactive
selection could be used to evolve further images starting with that
expression .

326

SIGGRAPH '91 Las Vegas, 28 July-2 August 1991

(sin (+ (- (grad-direction (blur (if(hsv-to-rgb (warped-
color-noise #(0.57 0.73 0.92) (/ 1.85 (warped-color-
noise x y0.02 3.08)) 0.112.4)) #(0.54 0.73 0.59)#(1.06
0.82 0.06)) 3 .1) 1.46 5.9) (hsv-to-rgb (warped-color-
noise y (/ 4 .5 (warped-color-noise y (/ x y) 2.4 2.4))
0.02 2 .4))) x))

Large amounts ofinformationof all the human selection choices
of many evolutions could be saved and analyzed . Adifficult chal-
lenge would be to create a system that could generalize and "under-
stand" what makes an image visually successful, and even generate
other images that meet these learned criteria.

Combinations of random variations and non-random variations
using learned information might be helpful . If a user picks pheno-
types in a certain direction from the parent, mutations for the next
generation might have atendency tocontinue in that samedirection,
causing evolution to have "momentum."

Also, combinations of evolution and the ability to apply specific
adjustments to the genotype might allow more user control over
evolved results. Automatic "genetic engineering" could permit a
user to request an evolved image to be more blue, or a texture more
grainy .

7 CONCLUSION

Artificial evolution has been demonstrated to be a potentially pow-
erful tool for the creation of procedurally generated structures, tex-
tures, and motions. Reproduction with random variations and sur-
vival of the visually interesting can lead to useful results . Repre-
sentations for genotypes which are not limited to fixed spaces and
can grow in complexity have shown to be worthwhile .

Evolution is a method for creating and exploring complexity
that does not require human understanding of the specific process
involved . This process of artificial evolution could be considered
as a system for helping the user with creative explorations, or it
might be considered as a system which attempts to "learn" about
human aesthetics from the user. In either case, it allows the user and
computer to interactively work together in a new way to produce
results that neither could easily produce alone.

An important limiting factor in the usefulness of artificial evo-
lution is that samples need to be generated quickly enough such
that it is advantageous for the user to choose from random samples
instead of carefully adjusting new samples by hand . The computer
needs to generate and display samples fast enough to keep the user
interested while selecting amongst them . As computation becomes
more powerful and available, artificial evolution will hopefully be-
come advantageous in more and more domains.

8 Acknowledgments

Thanks to Lew Tucker, Jim Salem, Gary Oberbrunner, Matt Fitzgib-
bon, Dave Sheppard, and Zotje Maes for help and support . Thanks
to Peter Schroder for being a helpful and successful user of these
tools. Thanks to Luis Ortiz and Katy Smith for help with document
preparation . And thanks to Danny Hillis, Larry Yaeger, and Richard
Dawkins for discussions and inspiration.

9 APPENDIX

Figure 5, Parent expression :

(warped-color-noise (warped-bw-noise (dissolve x 2.53 y) z 0.09 12 .0) (invert z) 0.05
-2 .06)

Figure 6, Marble torus:
(dissolve (cos (and 0.25 #(0.43 0.73 0.74))) (log (+ (warped-bw-noise (min z 11 .1)
(log (rotate-vector (+ (warped-bw-noise (cos x) (dissolve (cos (and 0.25 #(0.43 0.73
0.74))) (log (+ (warped-bw-noise (max (min z 8.26) (/ -0.5 #(0.82 0.39 0.19))) (log
(+ (warped-bw-noise (cos x) z -0 .04 0.89) #(0.82 0.39 0.19)) #(0.15 0.34 0.50)) -0 .04

®Computer Graphics, Volume 25, Number 4, July 1991

Figure 12 .

Figure 13 .

327

-3.0) y) #(0.15 0.34 0.50)) y) -0 .04 -3 .0) x) z y) #(0.15 0.34 0.5)) -0.02 -1 .79) -0.4)
#(-0.09 0.34 0.55)) 47)

Figure 7, Cross dissolve:

(hsv-to-rgb(bump(hsv-to-rgb (ifs 2.290.003 (dissolve 1 .773.67time) 2.60.1 (dissolve
5.2 3.2 time) -31.0 (dissolve 23.9 -7 .4 time) (dissolve 1 .13 9.5 time) (dissolve 4.80.16
time) 20.7 4.05 (dissolve0.48 0.46 time) (dissolve 2.94 -0 .68 time) (dissolve 0.420.54
time) (dissolve 0.09 0.54 time))) (atan 2.25 (dissolve 0.1 0.11 time) 0.15) (dissolve
4.09 8.23 time) (dissolve #(0.41 0.36 0.08) #(0.68 0.22 0.31) time) #(0.36 0.310.9 1)
(dissolve 6.2 4.3 time) (dissolve 0.16 0.40time) (dissolve 2.08 0.23 time)))

Figure 8, Fire of Faces:

SIGGRAPH '91 Las Vegas, 28 July-2 August 1991

(+ (min 10.8 (warp-rel image image (bump image x 9.6 #(0.57 0.02 0.15) #(0.52
0.03 0.38) 3.21 2.49 10.8))) (dissolve #(0.810.4 0.16) x (dissolve y #(0.88 0.99 0.66)
image)))

Figure 10 :

(rotate-vector (log (+ y (color-grad (round (+ (abs (round (log #(0.010 .67 0.86) 0.19)
x)) (hsv-to-rgb (bump (ifx 10.7 y) #(0.94 0.01 0.4) 0.78#(0.18 0.28 0.58) #(0.40.92
0.58) 10.6 0.23 0.91))) x) 3.1 1 .93 #(0.95 0.7 0.35) 3.03)) -0 .03) x #(0.760.08 0.24))

Figure 11 is unfortunately "extinct" because it was created before
the genome saving utility was complete .

Figure 12 :

(cos (round (atan (log (invert y) (+ (bump (+ (round xy) y) #(0.460.82 0.65) 0.02#(0.1
0.06 0.1) #(0.99 0.06 0.41) 1.47 8.7 3.7) (color-grad (round (+ y y) (log (invert x) (+
(invert y) (round (+ y x) (bump (warped-ifs (round y y) y 0.08 0.06 7.4 1.65 6.10.54
3.10.26 0.73 15 .8 5.7 8.9 0.49 7.2 15 .6 0.98) #(0.46 0.82 0.65) 0.02 #(0.1 0.06 0.1)
#(0.99 0.06 0.41) 0.83 8.7 2.6))))) 3.1 6.8 #(0.95 0.7 0.59) 0.57))) #(0.17 0.08 0.75)
0.37) (vector y 0.09 (cos (round y y)))))

References

[1] Aono, M., and Kunii, T. L., "Botanical Tree Image Gener-
ation," IEEE Computer Graphics and Applications, Vol.4,
No.5, May 1982.

[2] Darwin, Charles, The Origin ofSpecies, New American Li-
brary, Mentor paperback, 1859.

[3] Dawkins, Richard, The Blind Watchmaker, Harlow Logman,
1986 .

[4] Dawkins, Richard, "The Evolution of Evolvability," Artificial
Life Proceedings, 1987, pp.201-220.

[5] Goldberg, D. E., Genetic Algorithms in Search, Optimization,
andMachine Learning, 1989, Addison-Wesley Publishing Co.

[6] Grenfenstette, J. J., Proceedings of the First International
Conference on Genetic Algorithms and Their Applications,
Hillsdale, New Jersey, Lawrence Erlbaum Associates, 1985 .

[7] Grenfenstette, J. J., Genetic Algorithms and Their Applica-
tions: Proceedings ofthe SecondInternational Conference on
Genetic Algorithms, 1987, (Hillsdale, New Jersey : Lawrence
Erlbaum Associates.)

[8] Haase, K., "Automated Discovery," Machine Learning : Prin-
ciples and Techniques, by Richard Forsyth, Chapman & Hall
1989,pp.127-155 .

[9] Haggerty, M., "Evolution by Esthetics, an Interview with
W. Latham and S. Todd," IEEE Computer Graphics, Vol. 11,
No.2, March 1991, pp.5-9 .

328

[10] Hillis, W. D., "The Connection Machine," Scientific Ameri-
can, Vol. 255, No. 6, June 1987 .

[11] Holland, J. H., Adaptation in Natural andArtificial Systems,
Ann Arbor, MI : University of Michigan Press, 1975 .

[12] Koza, J. R. "Genetic Programming: A Paradigm for Genet-
ically Breeding Populations of Computer Programs to Solve
Problems," Stanford University Computer Science Depart-
ment Technical Report STAN-CS-90-1314, June 1990.

[13] Koza, J. R. "Evolution and Co-Evolution of Computer Pro-
grams to Control Independently Acting Agents," Conference
on Simulation ofAdaptive Behavior (SAB-90) Paris, Sept.24-
28, 1990 .

[14] Lenat, D. B. and Brown,J.S . "Why AM andEURISKO appear
to work," Artificial intelligence, Vol.23, 1984, pp.269-294 .

[15] Lewis, J. P, "Algorithms for Solid Noise Synthesis," Com-
puter Graphics, Vo1.23, No.3, July 1989, pp.263-270.

[16] Oppenheimer, P "Real time design and animation of fractal
plants and trees." Computer Graphics, Vo1.20, No-4, 1986,
pp.55-64 .

[17] Oppenheimer, P "The Artificial Menagerie" Artificial Life
Proceedings, 1987, pp.251-274.

[181 Peachy,D., "SolidTexturing ofComplex Surfaces," Computer
Graphics Vol.19, No.3, July 1985, pp.279-286.

[19] Perlin, K., "An Image Synthesizer," Computer Graphics,
Vol. 19, No.3, July 1985, pp.287-296 .

[20] Perlin, K., "Hypertexture," Computer Graphics, Vol.23, No.3,
July 1989, pp.253-262.

[21] Prusinkiewicz, P, Lindenmayer, A., and Harlan, J., "Develop-
mental Models of Herbaceous Plants for Computer Imagery
Purposes," Computer Graphics, Vol.22 No.4, 1988, pp.141-
150.

[22] Reffye, P, Edelin, C., Francon, J., Jaeger,M., Puech, C. "Plant
Models Faithful to Botanical Structure and Development,"
Computer Graphics Vol.22, No.4, 1988, pp.151-158.

[23] Schaffer, J. D., "Proceedings oftheThird internationalConfer-
ence on Genetic Algorithms," June 1989, Morgan Kaufmann
Publishers, Inc.

[24] Sims, K., Panspermia, Siggraph Video Review 1990.

[25] Smith, A. R., "Plants, Fractals, and Formal Languages," Com-
puter Graphics, Vo1.18, No.3, July 1984, pp. 1-10 .

[26] Steele, G., Common Lisp, The Language, Digital Press, 1984 .

[27] Thinking Machines Corporation, Connection Machine Model
CM-2 Technical Summary, technical report, May 1989 .

[28] Todd, S. J. P, and Latham, W., "Mutator, a Subjective Human
Interface for Evolution of Computer Sculptures," IBM United
Kingdom Scientific Centre Report 248, 1991 .

[29] Viennot, X., Eyrolles, G., Janey, N., and Arques, D., "Com-
binatorial Analysis of Ramified Patterns and Computer Im-
agery ofTrees," Computer Graphics, Vol.23, No.3, July 1989,
pp.31-40 .

