
MeadInterview2

	

1

	

File: 2 Carver.doc

10/00
CARVER MEAD INTERVIEW PART TWO
Document 2 of 4 of Mead Interview
By: Gene Youngblood

CARVER: Full custom handcrafted chips typically take three years . What that means is that
people hand design certain pieces and then they use some kind of computer aid to help them put
the stuff together . Nobody sits down and draws the whole chip on one giant sheet of mylar any
more like they used to . That's impossible. At least ten years ago people began using simple CAD
systems to help place the pieces they'd drafted by hand . That's just plain common sense . Even the
old kind of design aids helped . And there's been this continual evolution of things that made that
easier to do . So any chip done in the last ten years, nobody sat down and drew the whole thing on
one piece of paper . They drew pieces of it and then they plotted it and then they drew some more,
and so on . You can get there that way but it's an enormous amount of effort . If you have a good
methodology and good people that understand the design you can do some pretty ambitious chips
using not very advanced tools, if you've thought the thing through .

GENE: By what factor does a silicon compiler reduce design time?

CARVER: Maybe 75% or an order of magnitude . From several weeks to several months . It
depends on what you count ; a lot of design goes into just conceptualizing what you need . One
thing a silicon compiler allows you to do which we never could do before is exploratory
architecture, where you can actually try a design and see how it comes out ; if it doesn't work you
try something else . We could never that before because the amount of energy to implement a
design is so high that once you get on an approach you force it to finish, even if it's a horrible chip
when you're done . And there's a lot of examples on the market . They got finished because
economically it's not feasible to scrap them and start over .

GENE: Will design time ever be independent of chip complexity?

CARVER: It depends on what you mean by complexity . It's certainly not a direct function of the
number of transistors ; it's a function of how much the designer has to think about the design .
That's quite a different matter . That has not been a dimension along which people have measured
things very much . So design time will indeed become independent of raw transistor count, but
people will figure out conceptually more complex things and then it'll take them longer to get
those figured out . What a silicon compiler does is make the implementation trivial. It doesn't mean
getting the idea is any easier .

GENE: Will something equivalent to supercomputer power be necessary for silicon
compilation as we approach the multimillion-transistor level of complexity? Even now Cray
is already promoting its machines for VLSI design.

CARVER: What people think of when they say supercomputer is going to change . I already
showed you a chip that'll do about 600 VAXes worth of computation . The actual numbers of adds
and multiplies are only maybe five or ten million per second; that sounds like maybe ten VAXes.
But by the time you get done shuffling all the data around and getting everything in the right place
and all that, it ends up being a few hundreds times real time instead of a few tens times real time .
most of what goes on in a standard computer is just data shuffling . And that doesn't change with a
supercomputer . It's the same problem . So people are going to reconceptualize what they think
about supercomputers . It's going to be parallel architectures and a lot of special-purpose
architecture. Sure, there'll be some standard "general-purpose" architectures but the big
breakthroughs will be in special purpose architectures . The whole notion of supercomputing is
going to change . The people in that business don't want it to change, because they're in that

ASL



MeadInterview2

	

2

	

File: 2 Carver.doc

business .

GENE: Well, let us say then, will power in the supercomputer range, no matter how it's
achieved, be necessary for VLSI design?

CARVER: Sure. But what's really going to happen is that instead of doing a supercomputer people
will build special little accelerators to do pieces of the problem . There'll be a little simulation
engine that runs simulations like crazy. These various things that do the particular computations,
and you'll plug those boards into your workstation .

GENE: Why is the silicon compiler die size larger than hand-crafted chips?

CARVER: There are a lot of approaches to silicon compilation today. The one I worked on, the
chip size for a given function is much smaller than gate arrays or standard cells but still larger than
hand design of course, because that's what hand design does -- if you see some space you pack
some stuff into it . In a very funny way it does get to the point where that's compensated. What
really happens is people redo the architecture to make the chip more efficient . So actually for a
given function they can get things that are actually smaller than hand designs by exploring the
architectural approaches . But if you took any one of those once you're finished and redesigned it
by hand it would be smaller . But you can't afford to do that in VLSI. So the whole thing is really
deceptive because what a silicon compiler allows you to do is experiment with the architecture
until you find the most efficient architecture, and you can never do that in hand design . People will
look at a given chip and say "Oh, I could make that smaller by hand," but they never would have
gotten there by hand. So you're working a different end of the problem ; you're letting people
experiment on the architectural end . Then of course if they wanted to take that particular
architecture and repack it by hand you can always get it physically smaller . It's always true that
starting with something that exists you can always make it better by working on it . What the
silicon compiler does is let you start from scratch and get to something that exists that's really
quite efficient .

GENE: Is "full custom" synonymous with silicon algorithms?

CARVER: It means hand crafted . It's not synonymous with a dedicated architecture . Historically,
"full custom" has meant that you give the thing to somebody in a little design shop and they do a
hand-crafted design for that purpose.

GENE: In the literature they only say that silicon compilers are for full custom chips ; they
don't specifically talk about dedicated architectures. That's incredible, given the fact that
everyone would acknowledge that dedicated architectures are inherently faster than general
ones, and the only historical barrier to doing that has been the design time, and now you
have a technology that can do it and they don't even remark that achievement .

CARVER: It's always true when you have a new technology that the only terms in which people
can discuss it are the old terms . So it's really difficult to explain to people how things have to work
when you have a new technology . The only thing people can do is compare with what they know.
The only thing they know is that historically people have hand-crafted some designs .

GENE: There's the issue of who specifies the architecture, the designers or the compiler.
Today we're not yet at the point where the computer simply doesn't have the intelligence to
do that. So the designer specifies the architecture and then experiments with it through the
silicon compiler . But apparently there are people pursuing the AI approach or expert
systems approach where the compiler would have sufficient intelligence to actually make
architectural decisions .

CARVER: Well the AI people haven't done anything yet so it's hard to make comments about it .
That doesn't mean they won't . There's certainly room for heuristics in helping with the process, to

ASL



MeadInterview2

	

3

	

File: 2 Carver.doc

the extent that what we mean by AI is a heuristic approach to optimization -- of course there's
room for that and everybody's going to be doing that . But there's another thing going on that you
need to know about . What a lot of people mean by automatic architecture is fixed architecture .
They have picked the architecture ahead of time and they compile a chip in that class . And all the
early silicon compilers were like that. I wrote one myself in 1971 that was like that . i t only did one
little architecture . And it did all the silicon compiling things -- it took in the thing and generated
the simulation from the same source that generated the artwork, but it only did this one little tiny
architecture. And then when Dave Johannsen did his thing he did a wider class of architecture .
And a lot of people now are doing an even wider class of architectures, but they're still within
limits . There's nothing wrong with that if that architecture fits what you want to do, but it doesn't
allow you to do architectural exploration, which is one of the dimensions of silicon compilation
that's really highly important . The approach that the Silicon Compiler Inc . people tool -- which is
Dave Johannsen and his people -- is to build a tool for people to do general architecture work. So
they built a tool for architects ; it does implementations of systems for people who want to do
architecture -- to build algorithms in silicon, if you like . that isn't the only thing that needs to be
done . A couple of companies back east have built silicon compilers for building microcode
engines . That's going to have an impact on people who want to build microcode engines -- that's a
data path with a set of finite-state machines that sequences it. Our own early silicon compilers
were basically aimed at that thing too . since then they've become generalized . And of course once
you have a general tool you can always put a layer on top of it that has a higher level
representation and allows you then to generate the input for the general chip compiler . So the way
I look at the actual evolution of the industry is there will be a few really general chip compilers, a
bunch of front-ends for those that allow people to take a special thinking process or heuristic
programs or whatever and generate input for that, then there will be some honest-to-god special-
purpose silicon compilers .

GENE: Can we achieve VLSI density without sacrificing clock speed? For example, bipolar
and CMOS are converging today and people say CMOS will outperform bipolar . So will be
we able to carry a 100 MHz clock into VLSI?

CARVER: Oh sure . The problem with that is not that you can't make dense things that run at high
clock rates, it's that you're not going to have the entire chip completely lockstep at those clock
rates . Because just distributing a clock at those frequencies means that you're going to lose the
synchrony over the chip . You should ask Chuck Seitz about the fact that different pieces of the
chip are going to have to be able to operate autonomously. And you couple them in such a way
that their clocks don't have to be absolutely in phase . You run pieces of the chip on very fast
clocks and you communicate between them with some other frequency.

GENE: If you think of any machine as being a clock, in the normal human-scaled world
there seems to be a constant rule which says the fastest clock has to use the most energy, and
the one uses the most energy usually has some size constraints on it in order to dissipate that
heat. Therefore, in the normal physical human world the fastest clock that would also use
the least amount of energy is an impossible clock . But when you get down to the submicron
domain you have an impossible clock, because in order to achieve both high speed and high
density compaction, it has to use the least amount of energy comparatively speaking .

CARVER: Well, remember that what you said in the beginning is really true : if you try to take a
whole VLSI chip and clock it at 100 MHz it will indeed dissipate an impossible amount of energy .
But you don't have to run the whole chip at the same clock rate and you don't have to clock every
element every time -- there are a lot of ways you can get the effect of that speed without having
this global thing that's just pumping all that charge all the time. That's just physics . If you have
every element in there switching every time, then there's just the amount of stored energy times
the frequency, and that doesn't change depending upon how many elements . You make the
elements smaller, there are more of them, so in that sense you can run more things faster with the
same power ; but the basic physics doesn't change . Pumping things up and down at a fast rate takes
a huge amount of energy and the faster the rate and the more things, the more energy . That part

ASL



MeadInterview2

	

4

	

File: 2 Carver.doc

doesn't change . It's really the area: how much area do you pump? Think of the chip as a big
capacitor and you're just pumping charge in and out ofit, and every time you pump it it's one-half
CV squared that you lose in energy ; so the power is one-half CV squared times the frequency.
Period. Capacitance times V-squared hasn't been changing a lot with chip evolution ; capacitance
has been getting a little bigger, the voltage a little lower ; it's getting a little better but basically
that's one of those things that doesn't change much. What's really going on is that we can make
individual pieces of the circuit extremely fast and then you do something to not have to run the
whole circuit that fast. For example, communications controllers have to decode stuff coming in
off of, say, a local-area network at 10 MHz; that means you've got to have some multiple of that in
your resolution of things, so that's got to be fast on the front-end and for error-correcting, but then
you get it in and you go into some parallel thing that can run a lot slower, so you do most of your
processing at a lot slower rate, but in parallel . So your high clock rates are primarily for
interfacing the chip with the outside world . If you're interfacing with an optical fiber you've got to
be running in the gigahertz range . But somehow there's a way of not having to switch every
element every time . (Chuck can tell you some nice things about the whole self-timing thing where
you only do switching if you need it . Things don't switch unless they change) .

GENE: Geoffrey Fox claims the speedup through concurrency is a linear function of the
number of PE's, period.

CARVER: I have gone on record as saying that the special-purpose architectures are going to be
the way to approach highly concurrent architectures . The reason for that isn't that isn't that -- yeah,
for Geoffrey's particular problem, he can arrange things in such a way that you only have nearest
neighbor communications and then you can get a linear increase in computation with the number
of elements . And that'll work until he wants to do something a little more sophisticated . The
computations they're doing isn't very different from the one you have to do in music, and they're
getting about one VAX per circuit board worth of computation and we're getting about 600
VAXes per chip . That should calibrate you a little bit .

GENE: What's the problem with doing floating-point in silicon?

CARVER: We chose to do 64-bit fixed point instead of 16-bit floating point in our music chips
because it's much cleaner and for a lot of applications if you go to a really long word you can use a
fixed point number every bit as effectively as you can use a shorter floating point number, and the
computation does get enormously simplified. I mean, doing floating point is a bitch . There's no
question about that . Because you have all the interaction between the exponent and the mantissa's .
In particular, adds are horrible .

GENE: There's a lot of floating point in graphics .

CARVER: Well nobody's ever thought through if you really need to do that or not . It's just that,
they look at the dynamic range they have, which is huge, and they say gee we've got to do floating
point . On the other hand they've only got a 1000 by 1000 matrix, so it's certainly a finite resolution
of things . So I believe nobody's really thought through whether you can do that with a long-word
fixed point arithmetic . Nobody has a long-word, fixed point engine, it's all 16-bit or 32-bit .
Algorithms in silicon would facilitate that. But I'm really not sure whether it would be more
effective to buy a bunch of floating point engines to do it or whether it would be more effective to
just have some long-word fixed-point engines -- of which you could have a lot more on the same
silicon . And then you ask yourself what the tradeoff is . And it's just an engineering tradeoff, it's
not a religious issue .

GENE: Geoffrey Fox said that for his particular scientific problems, the larger the problem
the less viable it is to build it into hardware. The more parts you have with greater degrees
of freedom, the more general the problem and you need a general purpose computer.

CARVER: That's the old lore of the programmable machine people . They know how to program ;

ASL



MeadInterview2

	

5

	

File: 2 Carver.doc

they don't know how to design chips . So they assume its easier to write a program . They can't
conceive that with a chip compiler you could compile a special-purpose architecture for a problem
easier than you can figure out how to use one of those stupid programmable highly concurrent
machines . Right now if you look at the amount of programming time it takes use an array
processor, you could easily have a special-purpose architecture up and running before you could
have the same algorithms running on an array machine. I'm not saying that's always true; there is a
lot of merit to programmable things you can change in some way ; but it's a big mistake to think
that sequential programming languages are going to work on concurrent machines for anything
except the most simple problems . It's real easy when everything's doing the same thing, to write
down what it does and you have a bunch of Von Neumann machines working on it and its
straightforward . But when it's more complicated than that it's not so trivial any more. I'll once
again refer to the music problem, where the instruments are separable in the sense that a voice is
separate from other voices, but then they have to get choreograph- ed together with some kind of
conductor kind of thing, and each one's a little different, and now it isn't quite so trivial anymore .

GENE: It's probably the same thing in graphics if you want to do photoreal simulations of
natural phenomena. That's very interesting. The physicists will say they're doing the real
serious work, modeling the universe, and if you want to play with the big boys and model the
universe, then you need a general purpose supercomputer. But it seems to me that modeling
natural phenomena for visual simulation is at least as complex if not more so in terms of the
dynamic complexity of the problem.

CARVER: It has one other advantage : you can tell if you've done it. A whole lot ofphysics these
days has the problem of how many angels are dancing on the head of a pin .

GENE: So could it be that modeling the universe is a simpler problem than modeling an
orchestra or a small ensemble?

CARVER: Yes, it's more real . Physics has gotten itself off in left field . I don't want to get my
physics friends mad at me . I do a lot of physics myself. But the physics community is in a bit of
trouble nowadays and the reason is it has lost a lot of contact with reality. I mean the kinds of
experiments where they look for these particles at some enormous energies and they have some
symmetry groups which they think explain the particles, which are really just a way of cataloging .
A symmetry group doesn't explain anything . It's like Mendelev before we understood what made
the periodic table; you could see there was periodicity in it and you could make some predictions
from that . Well that's nice but it doesn't say why it's there. My perception is that they've got a very
peculiar view going in physics and they cover that up with a lot of ego. It's very, very far from
anything direct and experiencable by real human beings or even measurable by real human beings .
If you look at the experiments that are done by casts of thousands on billion-dollar facilities, the
whole thing has taken on an air of unreality that's just monumental .

GENE: If the 286 isn't significantly different from the 8008 in the sense that it's a
microprocessor, then at what level of thinking does VLSI begin for you?

CARVER: It's certainly true that the microprocessor started an era where computation and silicon
weren't separate any more . In other words the real significance of the micro- processor was that
people could no longer think of computation as going separate from its technology base . In fact it
never had been separate . It's just that people thought of it that way . There was the computer
industry and there was some other place where they bought their parts, and those were just parts
and they didn't really matter . Well the complexity of things continued to grow because the basic
fab process allowed you to put more and more transistors down ; but building a big memory is no
different than building a little memory. So in terms of the way the fab guys have to think, it's VLSI
all right because they've got to make the thing yield . So from their point of view it's VLSI the
moment it gets to 100,000 transistors . But from the point of view of the designer those memories
are no different than they ever were. They're just little wizened circuits . And the memory
designer's job is no harder, involves no more intellectual content, than it did before VLSI . Have

ASL



MeadInterview2

	

6

	

File: 2 Carver.doc

you heard the term "algorithmic complexity?" The idea is, how would you characterize the
complexity of a machine? Well, if you look at a crystal, for example, it can have ten to the twenty-
fourth atoms in it . But you can specify it by the shape of a unit cell and the way the unit cells are
stacked together . So there's really only two pieces of information . So in a few tens of bits you can
specify a crystal . So it's not anywhere the ten to the twenty-fourth kind of complexity because of
the very regular nature of it . Programs are the same way. You write a loop and the loop can go and
create a god-awful amount of stuff, but if it's one simple little thing, no matter how much it's
repeated it's not complex somehow . So if you look at it from that point of view and say well how
can we talk about the complexity of silicon algorithms, it's really the sort ofunique function and
the amount of unique interconnection that have to be specified, that aren't just repeated regularly,
that gives you the nature of the complexity of the thing. So let's look at Geoffrey Fox's machine.
It's a crystal . He's already told you that. No matter how big it is it's a crystal . It has one kind of unit
cell that's hooked up in some way to its neighbors . so you have to specify exactly what you have
to specify in a crystal : it's no more complex than the description of its unit cell and of its
connections . And the fact that it might have a longer-word ALU doesn't make it more
complicated . But if it has a more complicated ALU -- if it does floating-point, that's a lot more
complicated than a fixed-point ALU. But if you go from a 16-bit ALU to a 64-bit ALU that
doesn't make it more complicated, algorithmically. It's harder for the fab guy to get yield out of it,
so from his point of view it may be qualitatively different . So the way I look at it is that the fab
guys have created a technology that's independent of what people use it for : a systems designer
can sue it for either a sophisticated purpose or a dead simple purpose . If people decide to just
make crystals out of it -- make a memory -- which doesn't have any more conceptual content than
memories ever did, then it's just a cost-reduction mechanism . That's all it is . It hasn't added any
real value except that you get more memory in a box of the same size for the same price. And
that's nice . But the real value of it added by what you put into the memory. And that's why
memories are cheap : there's no conceptual content in them . But now you take something like a 32-
bit microprocessor -- and I was a little facetious : the 286 is really quite a bit more sophisticated
than the 8080 -- so in fact they've added more value there than you would ifit had been a memory,
because it does a lot of things better ; on the other hand, if you take that another level and ask if
there's any new conceptual content in it, well no, it's doing what minicomputers always did . So it's
new to silicon in some way maybe but it adds nothing new to the theory of computing .
Incidentally, this is why there's always what people call the hardware/software tradeoff. It means
where is the value? Is the value in the patterns on the silicon or is the value in the little bit-patterns
in the memory after you've made the silicon? And you can always trade that off. The information's
always going to be on the silicon, but it may be in little electrical charges on the memory
locations; in which case it was the value added by the guy that wrote the software. Or it may be
that someone actually created a structure that embodied that algorithm, in which case he put it
directly on the silicon -- in the wiring, in the content of those pieces of silicon . So for me, VLSI
begins when you can start thinking about algorithmic complexity. That's when it gets interesting .
And I've always thought of it that way, ever since it was just LSI . Because the potential was there
to build really complex things .

GENE: The silicon algorithm is a photograph that does what it represents.

CARVER: Furthermore they're beautiful . As forms, they're beautiful. If you've lived with them for
awhile you can appreciate them as an art form . You can tell a beautiful design from an ugly design
that does the same thing very easily.

CARVER: There are two transistors per memory location in a DRAM and six in a SRAM. And
three or four transistors per gate, if you're building gates. But the part they don't tell you -- these
people that like to count gates -- is that if you take a good well-designed silicon chip that's done by
experts and you make a gate diagram for what it does -- see, the thing itself can't be represented by
gates, because they don't represent a lot of the functionality you can get with transistors . Bit if you
make a gate diagram of the thing it turns out that we get about one equivalent gate for every one
and a half transistors . Because you use transistors not for making gates but for making things
much more clever than gates . Like you use a single-pass transistor as a memory location . If you

ASL



MeadInterview2

	

7

	

File: 2 Carver.doc

had to build that with gates you'd have to make two cross- coupled AND gates and some other
stuff and it'd take at least four gates to make what one single-pass transistor does . So gates aren't
an appropriate description for what happens in VLSI . and there's this enormous argument about
well, that's 30,000 transistors that's only 8000 gates . No 30,000 transistors is probably like 20,000
gates -- if you did it with gates, like in a gate-array . That part doesn't get told . But it means you're
using the silicon in a much more effective way than making gates out of it . So to summarize, if it's
done well the number of transistors per gate-equivalent is between one and two. That's because
you don't use them to make gates ; if you used them to make gates it'd be three or four . So you're
already using them twice as effectively as you would if you made gates, just by being the slightest
bit intelligent .

GENE: What is meant by "devices per chip" and how much of the chip area is devoted to
"gates" and how much to wires?

CARVER: Devices usually refers to transistors, and that's misleading because wires take up about
95 percent of the chip area. Let me say it another way : if you put the wires down that have to be
there you can usually slip the transistors underneath and not notice. It's down on the bottom levels
and the wires go over the top, and usually the wires you can work in with pieces of the transistor
and it turns out that if they were shrunk to zero area for the actual transistors themselves you
wouldn't save more than five or ten percent of chip area .

GENE: So when you say 100 million transistors per chip you're only talking about ten
percent of the chip area?

CARVER: Yeah, but you see, if it were just the transistors there they wouldn't do anything . What
they do is determined by how they're interconnected . So actually it's not a bad measure, because
when people have a working chip they tell you how many transistors they were able to
interconnect constructively . And that's an important number. That number is one dimension of this
complexity issue: it doesn't tell you if they're extremely regular or if they have more information
than that in them . And just because a thing appears regular doesn't mean there isn't information in
it that makes things not equivalent to other things . Like a ROM looks extremely regular but it may
have a lot of information in it because of the patterns in ROMs. Like Geoffrey Fox's computer : if
you were to put a different program in every machine, it would be a much more complex thing
than if you have one program in all the machines . That's what I meant by algorithmic complexity .
Of course, figuring out how to use it would also be that much more complex .

GENE: Is there a rule of thumb by which you can relate the minimum feature size or design
rule to the total area of a transistor in terms of square microns?

CARVER: A typical transistor in today's world is of the order of one design rule by one design
rule . Three by three is the most common transistor .

GENE: I read something that said 480 square microns.

CARVER: That's the amount of chip per device. If you take the total number of devices and divide
by chip area that's what you get . So then immediately you can take those two numbers and figure
out what the fraction of utilization is .

GENE: What is the computer revolution?

CARVER: There are a number of levels . The most obvious level is that since anybody can own an
ordinary Von Neumann-style computer, people are now discovering that they can do a lot of
things, so everybody's got a PC at home . They write programs to do all kinds of things . That's
become a thing you can talk about which you could never talk about before . It's like the car .
Enough people own cars that you can talk about them as a metaphor for explaining other things .
To me that's been the value of the microcomputer phenomenon : not so much what they do but the

ASL



MeadInterview2

	

8

	

File: 2 Carver.doc

fact that they're obvious enough and useful enough and ubiquitous enough that everybody knows
at least something about them. They're not great big things that gobble you up anymore . So that's
been a big help . But much more important than that in terms of microcomputers are the
microcomputers that get built into things -- telephones and typewriters and VCRs and all the
ordinary everyday life appliances and tools . Electric drills . A lot of people don't understand that
the reason electric drills don't get stuck as much as they used to is that they have a microprocessor
in them that looks at how fast the chuck's going around and where your finger is on the trigger and
figures out what they ought to do . Those are really much more powerful in the revolution they
create because they solve real problems instead of being something that you have to program to
solve a real problem . They actuallyjust do it . Somebody worked the whole thing out instead of
just saying well here, now it's your turn . All of this is in the context of what people think of as
computers . The fact that there has occurred a viable third-party software industry where it's now
considered OK to write software, you can actually make money doing that . That's not something
that was perceived a few years ago . That's where most of the actual value is added in terms of
algorithmic complexity. The value is added in the programs, not the hardware itself. The hardware
is trivial . Most computers don't have much in them. They're really just a receptacle for software .
So of course the really important thing that's coming up -- and we haven't really begun to see it --
is the revolution of algorithms in silicon, where all the things you could never do with computers -
- which were the things you really wanted to do -- like make pictures and music and all of the
things that relate to people and to what people really want to do -- ordinary computers can't touch
that . They're off by at least five orders of magnitude in computational power . That to me is the
really exciting thing and it's the thing that hasn't been touched yet by what people are talking about
as the computer revolution . But I think if you dig underneath all that, people's notion of value is
changing . It used to be that people thought of material as value, so they'd think about steel or
aluminum or gold or diamonds . It was things that were valuable . After a while it became clear that
it was also energy that was valuable : energy allowed you to transform things into other things . Up
until very recently that's been people's image of value: things held value. And the fact that it's
actually information that's the thing that's valuable rather than the substance, is something that's a
new idea. That's why nobody would give you a dime for software . Because what the hell it's just a
tape you can copy so why is there any value in it . You could have said the same for motion
pictures except that was in a different domain so it had different laws and it grew up understanding
that the value wasn't in the celluloid . But everyplace else, especially in technology, people had this
very weird view of where the value really was . To me the most fundamental revolution that's
going on is people are now beginning to perceive that not just in entertainment is the information
the important thing . And that's always been true in entertainment, in music and motion pictures
and paintings . It wasn't those little tubes of paint and a piece of canvas, it was the information that
was there . So it's always been true in the arts but it has taken a long time to dawn in other areas .
And now it's happening in machines and businesses . People are beginning to see that the
information is the valuable thing . It brings these closer to the fine arts and the human pursuits, not
farther away . That's not generally perceived but it's very true .

GENE: Is it fair to say that highly concurrent silicon algorithms put many orders of
magnitude more computing power in the hands of average people? Is that part of the
revolution?

CARVER: Oh yeah . Things that the ordinary computer could never do . Vision . Speech
understanding . Music . Visual simulation .

End of Carver


